首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   7篇
测绘学   3篇
大气科学   15篇
地球物理   42篇
地质学   34篇
海洋学   21篇
天文学   29篇
自然地理   6篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   6篇
  2014年   2篇
  2013年   12篇
  2012年   5篇
  2011年   11篇
  2010年   9篇
  2009年   9篇
  2008年   17篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有150条查询结果,搜索用时 343 毫秒
21.
We address key factors involved in determining water flow conditions in outflow channels on Mars, including the temperature of the sub-surface water being released and the environmental conditions of low temperature, low atmospheric pressure, and low acceleration due to gravity. We suggest how some of the assumptions made in previous work may be improved. Our model considers the thermodynamic effects of simultaneous evaporation and freezing of water, and fluid dynamical processes including changes in flow rheology caused by assimilation of cold rock and ice eroded at the channel bed, and ice crystal growth due to water freezing. We model how far initially turbulent water could flow in a channel before it erodes and entrains enough material to become laminar, and subsequently ceases to erode the bed. An ice raft will begin to form on the flood while transition occurs between turbulent and laminar flow. Estimates are given for water transit times, ~17–19 h, initial water depths, 50–62 m, and average flow speeds, 5–12 m s?1, in the Mangala and Athabasca Valles. We show that these two outflow channels, and by implication others like them, could plausibly have been formed in single water release events. Resulting mean erosion rates are approximately 0.7 mm s?1, a factor of three greater than previous estimates based on combinations of estimates of flood duration and required water volumes. This is explained by the consideration of the effects of eroded ice and the physics of thermal erosion in the present study.  相似文献   
22.
Seston transport and deposition in Pelorus sound,south Island,New Zealand   总被引:2,自引:2,他引:0  
Transport of seston (suspended sediment) in Pelorus Sound is controlled by tides and freshwater inflow. During high freshwater inflow, a moderately stratified estuarine circulation may be superimposed on the tidal circulation, but the latter dominates and transports seston seawards and landwards with the ebb and flood phases respectively. With extreme freshwater inflow, the estuarine circulation gains impetus and most seston is rapidly transported seaward in the low saline surface layer.

Irrespective of circulation there is a persistent trend in seston concentrations. Highest values occur at the sound's head because of the influence of nearby Pelorus and Kaituna Rivers and because of resuspension of bottom sediment by strong tidal currents. Seston concentrations wane along the sound until near the entrance, where values increase as a result of greater production of biogenic seston and because additional seston is brought in from Cook Strait with the flood tide. This trend parallels variability in the thicknesses of muddy bottom sediments. Muds are thick at the head where an extensive delta extends from the river mouths; muds gradually thin seaward and then thicken markedly in the vicinity of the sound entrance.

Seston weight and composition patterns and 3.5 kHz seismic profiles indicate Pelorus Sound acts as a double‐ended sediment trap. The upper reaches receive and retain river‐derived seston, whereas the sound entrance traps seston derived from Cook Strait. This situation appears to hold for both high and extremely high influxes of sediment.  相似文献   
23.
The large slow‐moving landslide of Maca is located in the upper Colca valley (southern Peru), a region characterized by a well pronounced rainy period, and intense and recurrent sustained seismicity. The landslide, developed in deep lacustrine deposits, has recently accelerated, threatening the Maca village. This work aims at understanding the rupture mechanism and the causes of the recent landslide reactivation/acceleration. We present a multidisciplinary characterization of the Maca landslide that includes: (i) geological and morphological mapping in the field; (ii) remote sensing analysis using an historical aerial photograph of 1955 and the Pléiades satellite images (2013); (iii) global positioning system (GPS) including time‐series of surveys over 13 years, and continuous measurements over 14 months; (iv) a geophysical campaign with deep electrical resistivity tomography profiles acquired across the landslide mass. Our study shows that this 60 Mm3 landslide, which can be classified as a clay/silt compound landslide, moved by 15 m between 2001 and 2014 with a large inter‐annual velocity variation (up to a factor of 500) depending on the rainfall intensity. We suggest that these dramatic changes in velocity are the result of the combination of a threshold mechanism and the short intense rainy season in Peru. This study reveals three main driving factors acting at different timescales: (i) over several decades, the river course has significantly changed, causing the Maca landslide reactivation in the 1980s due to the erosion of its toe; (ii) at the year scale, a minimum amount of rainfall is required to trigger the motion and this amount controls the landslide velocity; (iii) transient changes in slide velocity may occur anytime due to earthquakes. This study particularly highlights the non‐linear behaviour of the motion with rainfall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
24.
25.
The ability of the two synthetic marine biotic indices, AMBI and M-AMBI, to account for changes in the ecological quality of coastal soft bottoms of Reunion Island according to disturbances was assessed from macrobenthic samples collected in five sectors between 1994 and 2004. Samples were collected under non-perturbed conditions and at two sites subjected to heavy organic enrichment. Both indices are based on a classification of macrofauna into ecological groups (EG), and their transfer to tropical waters required some adaptations. These indices proved efficient in detecting a degradation of habitat quality. Their use resulted in the classification of all sites sampled between 1996 and 1998 as "good" or "high". M-AMBI nevertheless tended to result in the attribution of a slightly worse ecological quality status than AMBI. Together with an update of the EG species list for the Indian Ocean area, our results support the extension of both indices for the assessment of tropical soft bottoms.  相似文献   
26.
The Arctic has become a sink for persistent organic pollutants (POPs) originating from lower latitudes, and relatively high levels have been found in different biota. Recent studies have identified detrimental effects on wildlife including endocrine disruption, impairment of enzyme activity, and reduced immune function. The Arctic spider crab, Hyas araneus, shown interesting potential for its use as sentinel organism in polar ecosystems. This study investigated the effect of 2,2',4,4'-tetra bromo diphenyl ether (BPDE), bisphenol A (BPA), and diallyl phthalte (DPA) on H. araneus in a three weeks exposure study. Expression of multixenibiotic resistance (MXR) proteins has been studied using the C219 monoclonal antibody which allows identifying an immunoreactive protein of 40 kDa in the digestive gland while no such protein could be observed in the gills. Expression of this protein was increased by exposure to DPA (+75%; p<0.05, n=10). All compounds significantly affected muscle acetylcholine esterase (AChE) activity (p<0.05, n=10) with 50 microg/L DPA having the strongest effect by lowering the value to 37% of control. The total oxyradical scavenging capacity measured in the digestive gland toward peroxyl, hydroxyl and peroxynitrite was also significantly reduced indicating a decreased resistance to oxidative stress generated by DPA (p<0.05, n=5). These results thus suggest the potential detrimental effects of DPA even at concentration as low as 50 microg/L on H. araneus.  相似文献   
27.
The South Pacific low latitude western boundary currents (LLWBCs) carry waters of subtropical origin through the Solomon Sea before joining the equatorial Pacific. Changes in their properties or transport are assumed to impact El Niño Southern Oscillation (ENSO) dynamics. At ENSO timescales, the LLWBCs transport tends to counterbalance the interior geostrophic one. When transiting through the complex geography of the Solomon Sea, the main LLWBC, the New Guinea Coastal Undercurrent, cannot follow a unique simple route to the equator. Instead, its routes and water mass properties are influenced by the circulation occurring in the Solomon Sea. In this study, the response of the Solomon Sea circulation to ENSO is investigated based on a numerical simulation. The transport anomalies entering the Solomon Sea from the south are confined to the top 250 m of the water column, where they represent 7.5 Sv (based on ENSO composites) for a mean transport of 10 Sv. The induced circulation anomalies in the Solomon Sea are not symmetric between the two ENSO states because of (1) a bathymetric control at Vitiaz Strait, which plays a stronger role during El Niño, and (2) an additional inflow through Solomon Strait during La Niña events. In terms of temperature and salinity, modifications are particularly notable for the thermocline water during El Niño conditions, with cooler and fresher waters compared to the climatological mean. The surface water at Vitiaz Strait and the upper thermocline water at Solomon Strait, feeding respectively the equatorial Pacific warm pool and the Equatorial Undercurrent, particularly affect the heat and salt fluxes. These fluxes can change by up to a factor of 2 between extreme El Niño and La Niña conditions.  相似文献   
28.
The turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry (PIV). Conditions within the boundary layer were varied by changing the width of the canyons upstream of the test canyon, whilst maintaining the square geometry of the test canyon. The results show that turbulent transfer is due to the coupling between the instabilities generated in the shear layer above the canyons and the turbulent structures in the oncoming boundary layer. As a result, there is no single, unique velocity scale that correctly characterizes all the processes involved in the turbulent exchange of momentum across the boundary layer. Similarly, there is no single velocity scale that can characterize the different properties of the turbulent flow within the canyon, which depends strongly on the way in which turbulence from the outer flow is entrained into the cavity and carried round by the mean flow. The results from this study will be useful in developing simple parametrizations for momentum exchange in the urban canopy, in situations where the street geometry consists principally of relatively long, uniform streets arranged in grid-like patterns; they are unlikely to be applicable to sparse geometries composed of isolated three-dimensional obstacles.  相似文献   
29.
The influence of surface roughness on the dispersion of a passive scalar in a rough wall turbulent boundary layer has been studied using wind-tunnel experiments. The surface roughness was varied using different sizes of roughness elements, and different spacings between the elements. Vertical profiles of average concentration were measured at different distances downwind of the source, and the vertical spread of the plume was computed by fitting a double Gaussian profile to the data. An estimate of the integral length scale is derived from the turbulence characteristics of the boundary layer and is then used to scale the measured values of plume spread. This scaling reduces the variability in the data, confirming the validity of the model for the Lagrangian integral time scale, but does not remove it entirely. The scaled plume spreading shows significant differences from predictions of theoretical models both in the near and in the far field. In the region immediately downwind of the source this is due to the influence of the wake of the injector for which we have developed a simple model. In the far field we explain that the differences are mainly due to the absence of large-scale motions. Finally, further downwind of the source the scaled values of plume spread fall into two distinct groups. It is suggested that the difference between the two groups may be related to the lack of dynamical similarity between the boundary-layer flows for varying surface roughness or to biased estimates of the plume spread.  相似文献   
30.
A one-dimensional numerical model of the planetary boundary layer was used to investigate thermal and kinetic energy budgets. The simulation experiments were based on two sets of data. The first set was based on a ‘typical’ June with climatological data extracted for the oceanic region slightly northeast of Barbados. The second set used data from the third phase of project BOMEX, for approximately the same area and time of year as the first set. Comparison with observations of three simulated elements (viz., sea surface temperature and wind and humidity at 6 m) which are important in determining the near-interface energy transports shows that:
  1. the model is capable of realistic simulations of both ‘typical’ conditions, and conditions for a specific four-day period;
  2. the model is capable of realistically simulating the differences between prevailing values of these parameters in the two cases (‘typical’ and specific four-day period).
The simulated interface fluxes are those of incoming and outgoing short- and long-wave radiation; transmitted radiation at -0.5 m in the ocean, sensible heat transfer into the ocean and air, and latent heat flux of evaporation. Comparison with observational analyses shows that the diurnal variations in net radiation and heat storage in the mixed layer are realistically simulated. The simulated values of evaporation are consistent with other estimates for both ‘typical’ conditions and specific conditions during this four-day period. The rate of heat storage varies between +51 and -37 percent of the diurnal maximum incoming radiation, and the evaporation varies between +16% and -13% of this term. The non-dimensional transfer coefficients (C D, CT, Cq) computed from the model show general agreement with the coefficients calculated from observations in the simulated region (Pondet al., 1971). The simulated vertical profiles of temperature are in general agreement with observed profiles, except in the uppermost portions of the atmospheric boundary layer where deviations of approximately 1.5C occur. Simulated vertical profiles of wind speed are generally consistent with observed profiles, with the largest deviations appearing to be of the order of 0.5 m s-1. Simulated vertical profiles of the eddy fluxes of sensible heat, water vapor, and momentum are generally consistent with Bunker's (1970) aircraft-based measurements of these quantities. The time averages of these simulated profiles show regular decreases with height, while simulated profiles for specific hours of the day show intermediate maxima and minima, which are also seen in the measured profiles. The vertically integrated kinetic energy budgets of the modelled atmospheric layer are presented through the four terms of the kinetic energy budget, viz., the upper and the lower boundary drags, dissipation, and potential-to-kinetic conversion. The dominant terms in the atmospheric energy budgets are the production and dissipation terms, with kinetic energy being exported both to the overlying atmospheric layer and to the underlying oceanic layer at rates of about 2 to 6% of the production, respectively. Comparisons between the climatological and BOMEX simulations are presented. The vertically integrated humidity budgets are presented for the two simulation experiments. Under ‘typical’ conditions, the humidity budget reveals an upper boundary flux of about +29% of the lower boundary flux with the vertically integrated advective flux being -59% of the lower flux. For the specific four-day simulation, the upper boundary flux and advection are about +28 and -70%, respectively, of the lower boundary flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号