首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51460篇
  免费   312篇
  国内免费   994篇
测绘学   1960篇
大气科学   3715篇
地球物理   9221篇
地质学   23230篇
海洋学   3430篇
天文学   7013篇
综合类   2219篇
自然地理   1978篇
  2022年   144篇
  2021年   209篇
  2020年   196篇
  2019年   235篇
  2018年   7034篇
  2017年   6249篇
  2016年   4042篇
  2015年   478篇
  2014年   522篇
  2013年   650篇
  2012年   2177篇
  2011年   5008篇
  2010年   4357篇
  2009年   4678篇
  2008年   3808篇
  2007年   4766篇
  2006年   603篇
  2005年   955篇
  2004年   1018篇
  2003年   1054篇
  2002年   731篇
  2001年   318篇
  2000年   342篇
  1999年   192篇
  1998年   210篇
  1997年   175篇
  1996年   116篇
  1995年   136篇
  1994年   119篇
  1993年   100篇
  1992年   73篇
  1991年   100篇
  1990年   101篇
  1989年   71篇
  1988年   82篇
  1987年   103篇
  1986年   84篇
  1985年   114篇
  1984年   104篇
  1983年   108篇
  1982年   88篇
  1981年   106篇
  1980年   126篇
  1979年   91篇
  1978年   89篇
  1977年   79篇
  1976年   66篇
  1975年   65篇
  1974年   71篇
  1973年   66篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
351.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
352.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   
353.
Morphodynamic modeling is employed in the present work to predict the long-term evolution (over the next 100 years) of typical sedimentary coasts in the western Russian Arctic. The studied objects are the coasts of Varandey (the Barents Sea), Baydaratskaya Bay and Harasavey (the Kara Sea). The model developed takes into account both the short-term processes (storm events) and long-term factors (for example, changes in sea level, inter-annual variations in gross sediment flux, lack or excess of sediment supply). Predicted and observed morphological changes in coastal profiles are shown to agree well for time scales ranging from weeks to decades. It is revealed that under given environmental conditions, the morphological evolution is strongly influenced by storm surges and associated wind-driven circulation. The water level gradient created by a surge generates a seaward flow at the bed. This outflow is shown to be an important destructive mechanism contributing to the erosion and recession of Arctic coasts. The rate of change is found to depend on both the exposure of the coast (relative to the direction of dominant winds) and its height above the sea. The open coast of Varandey is expected to retreat as much as 300–500 m over 100 years, while recession of the less exposed coasts of Baydaratskaya Bay would not exceed about 100 m/century. If long-term sediment losses are insignificant, the rate of erosion decays with time and the morphodynamic system may tend toward equilibrium. It is concluded that the expected relative sea-level rise (up to 1 m over the nearest 100 years) is non-crucial to the future coastal evolution if an erosion activity is already high enough.  相似文献   
354.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
355.
Annual mean fluxes of CO2 and oxygen across the sea surface are estimated with the use of numerical modeling for several regions located in the Gulf Stream and Kuroshio zones. The present-day climatic conditions and the climatic conditions expected in the middle and at the end of the 21st century are considered. Specific features of gas exchange under a strong wind that are associated with gas exchange by bubbles and with changes in the air-water difference of the gas concentrations were taken into account in the calculations. The estimates obtained differ substantially from the results based on the traditional approach, which disregards the above features. A considerable increase in the absorption of CO2 by the ocean, which is mainly caused by the continuing increase in the CO2 concentration in the air during its small changes in the ocean, is expected in the 21st century. At the same time, no trends are revealed in the annual mean fluxes of oxygen across the ocean surface. The conclusion is made that, in calculations of CO2 absorption by the world ocean, it is necessary to take into account both specific features of gas transfer under a strong wind and an increase in the atmospheric concentration of CO2.  相似文献   
356.
The results of continuous seismic profiling thermodynamics performed in the northern part of the Japan Basin in the region of the Tarasov Rise and the data of a micropaleontological examination of the diatom remains encountered in the sediment samples from the rise and continental slope are presented. In the area studied, the topography of the acoustic basement features a vast rise (plateau) buried under the sedimentary cover outlined by the depth contour 5.8 s. The plateau has a relatively smooth top surface crossed by a series of rises of the acoustic basement. The two largest rises are represented by the ridges of the Tarasov Rise. The plateau is separated from the continental slope by a depression in the acoustic basement with a depth up to 6.8 s. From the end of the Middle Miocene up to the beginning of the Paleocene, the region of the plateau represented an area of active volcanism; it coincided in time with the stage of subsidence of the floor of the acoustic basement depression. At the end of the Late Miocene, the ridges of the Tarasov Rise started to sink. In the Pliocene, this process accelerated, and, at the beginning of the Pleistocene, it stopped. In the Middle Miocene-Early Pleistocene time, the portion of the continental slope adjacent to the plateau remained stable and suffered no significant vertical movements.  相似文献   
357.
The expansion of wind fields observed at fixed times (four times daily) in complex empirical orthogonal functions is performed for the Japan Sea area (34°–53° N, 127°–143° E). The wind fields are taken from the 1998–2004 NCEP/NCAR Reanalysis data with better spatial resolution (1° × 1°) than the standard product, which are publicly available on the Internet. Major modes of wind variability in the Japan Sea area are identified. The modes determine a general direction of air-mass transport throughout a year, zonal and meridional modulation, and a cyclonic and an anticyclonic eddy component. Objective classification of wind fields with respect to the prevailing flow direction is performed, and wind stress and wind-curl patterns are obtained for major events in the cold and warm periods of the year. The pattern obtained can be used in hydrodynamic numerical models of the general circulation of the Japan Sea.  相似文献   
358.
The effects of scattering and resonance on the energy dissipation of an internal tide were investigated using a two-dimensional model which is a reassembled version of the theoretical generation model devised by Rattray et al. (1969) for internal tide. The basic character of the scattering process at the step bottom was first investigated with a wide shelf model. When the internal wave incited from a deep region (Region II) into the shallow shelf region (Region I), a passing wave into the shallow region, a reflected wave into the deep region, and a beam-like wave, i.e. a scattered wave (SW), emanated at the step bottom. The SW, which consists of the superposition of numerous internal modes, propagated upward/downward into both regions. The general properties of the SW were well expressed around the shelf edge, even in the present model with viscosity effect. The amplitude of the SW decreased dramatically when the depth of the velocity maximum of the incident internal wave in Region II corresponded with the depth of the shelf edge. In the narrow shelf model, where the decay distance of the internal wave in Region I is longer than the shelf width, the incident internal wave reflected at the coast to form a standing wave. When the internal wave in Region I is enhanced by the resonance, the energy of the SW in Region II is also intensified. Furthermore, the energy of the modes in Region II predominated when the velocity maximum is identical to that of the dominant mode in Region I. These results suggest that the spatial scale of shelf region is a very important factor governing the energy dissipation of the internal tide through reflection and scattering in a narrow shelf.  相似文献   
359.
The mechanism of the effect of a collapsing turbulent eddy on diapycnal transport in a stably stratified fluid is considered. It is shown that at small Richardson turbulent numbersRi 0 the mixing efficiency increases asRi 0, and at large numbers it decreases in proportion toRi 0 –1/2 .Translated by Mikhail M. Trufanov. UDK 551.465.15.  相似文献   
360.
In connection with the problem of revealing cause-effect relations among different climatic characteristics, methods for determining the dependence between time series on the basis of selected auto-and cross-covariance functions and periodograms expressed in terms of the Fourier coefficients of the initial series are discussed. Real time series do not always satisfy the conditions of statistical stationarity, so that their analysis requires a combination of statistical and deterministic approaches. The possibility of using the above numerical characteristics in relation to such series is considered. Characteristic features of describing finite segments of time series with the use of their Fourier coefficients is studied in detail. The main emphasis is on the determination of the time shifts (delays) at which the covariance between the series is maximal. The problems that appear during a practical implementation of the periodogram method for shift estimation are discussed. A previously unknown formula that is necessary for further studies and relates the Fourier transform of a selected correlation function to the periodogram of the series is derived.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号