首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   9篇
地球物理   13篇
地质学   6篇
综合类   1篇
自然地理   4篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有35条查询结果,搜索用时 46 毫秒
11.
Water scarcity issues in the Johor River Basin (JRB) could affect the populations of Malaysia and Singapore. This study provides an overview of future hydro-meteorological droughts using climate projections from an ensemble of four Coordinated Regional Climate Downscaling Experiments – Southeast Asia (CORDEX-SEA) domain outputs under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios for the 2021–2050 and 2071–2100 periods. The climate projections were bias corrected using the quantile mapping approach before being incorporated into the Soil and Water Assessment Tool (SWAT) hydrological model. The Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) were used to examine the meteorological and hydrological droughts, respectively. Overall, future annual precipitation, streamflow, and maximum and minimum temperatures are projected to change by about ?44.2 to 24.3%, ?88.7 to 42.2%, 0.8 to 3.7ºC and 0.7 to 4.7ºC, respectively. The results show that the JRB is likely to receive more frequent meteorological droughts in the future.  相似文献   
12.
The Mekong from satellite imagery: A quick look at a large river   总被引:1,自引:1,他引:1  
Physical datasets on rivers, thousands of kilometres long, can be efficiently and rapidly acquired through satellite imagery. As large rivers commonly cross several tectonic and climatic zones, their channels are composed of a number of units, each with characteristic morphology and behaviour. Separating a large river into such units provides a framework for understanding the geomorphology of the river concerned, allowing acquisition of information for environmental impact analysis and river management.About 2500 km of the Mekong River, from the China border to the sea, has been examined with SPOT satellite images with a selection of MODIS and IKONOS scenes in support. Hydrological data of the Mekong River Commission, hydrographic maps of the Commission, and field observations have been used to verify and extend the findings from the satellite imagery. The technique provides a rapid and holistic conceptualisation of forms and functions along the derived eight-unit classification of the Mekong River. Such a framework is valuable for (1) determining selected aspects of the geomorphological behaviour of a large river system, (2) rapidly analysing project-related environmental impacts, and (3) examining the geological evolution of the river. Investigating large rivers is difficult and resource consuming, but satellite imagery provides an easy and rapid tool. The cost of the images, however, may be high as a number of them are required for this type of analysis.  相似文献   
13.
The Southeast Asia rainfall (SEAR) anomalies depend strongly on phases of El Niño (La Niña). Using an extended empirical orthogonal function (EEOF) analysis, it is shown that the dominant EEOF mode of SEAR anomalies evolves northeastward throughout a period from the summer when El Niño develops to spring the following year when the event weakens. This evolution is consistent with northeastward migration of the ENSO-related anomalous out going radiation field. During boreal summer (winter), the strong ENSO-related anomaly tends to reside in regions south (north) of the equator. The evolution of dominant mode of SEAR anomalies is in tandem with the evolution of ENSO-related sea surface temperature (SST) anomalies. The strengthening and weakening of “boomerang-shaped” SST in western Pacific, the changing sign of anomalous SST in Java Sea and the warming in Indian Ocean and South China Sea are all part of ENSO-related changes and all are linked to SEAR anomaly. The anomalous low-level circulation associated with ENSO-related SEAR anomaly indicates the strengthening and weakening of two off-equatorial anticyclones, one over the Southern Indian Ocean and the other over the western North Pacific. Together with patterns of El Niño minus La Niña composites of various fields, it is proposed that the northeastward evolution of SEAR anomaly is basically part of the large-scale eastward evolution of ENSO-related signal in the Indo-Pacific sector. The atmosphere–ocean interaction plays an important role in this evolution.  相似文献   
14.
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi‐objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi‐objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi‐algorithm, genetically adaptive multi‐objective method (AMALGAM) for multi‐site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi‐objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non‐dominated Sorted Genetic Algorithm II (NSGA‐II)). In order to provide insights into each method's overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi‐method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi‐site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multi‐objective optimization algorithms and multi‐mode search operators into AMALGAM deserves further research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
15.
Suspended sediment concentration (SSC) is a critical parameter in the study of river sediment transport and water quality variation, but traditional measurement methods are costly and time‐consuming. This paper is focused on presenting a methodology that may be useful in estimating SSC which is of key importance in process geomorphology and hydrology. In previous studies, remote sensing has been applied to estimate the SSC of sea waters as well as low turbid inland waters like lakes, reservoirs and short river reaches visible within a single Landsat satellite image coverage. Rivers, especially highly turbid large rivers, have largely been ignored. The dataset used in this paper includes measured SSC and multi‐temporal Landsat ETM+ images covering most part of the Yangtze River. Using an effective easy‐to‐use atmospheric correction method that does not require in situ atmospheric conditions, retrieved water reflectance of Band 4 was found to be a good SSC indicator within the large SSC range 22–2610 mg l–1. The newly developed regression relation between SSC and water reflectance of Band 4 appears to be able to provide a relatively accurate SSC estimate directly from Landsat ETM+ images for the Yangtze River from the upper, the middle to the lower reaches. With the relation it is possible to estimate or map out SSC dynamics of large rivers which lack SSC data due to constraints of conventional measurements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
16.
Singapore is the third largest oil-refining centre in the world, with a large petrochemical hub located at Jurong Island. In view of the increasing concern for transportation security, there is an urgent need to improve the way trucks carrying hazardous materials (HAZMATs) are being routed on urban and suburban road networks. Routing of such vehicles should not only ensure the safety of travelers in the network but also consider the risk of the HAZMAT being used as weapon of mass destruction. This paper explores a novel approach to evaluating the risk of HAZMAT transportation by integrating Geographic Information Systems (GISs) and Genetic Algorithms (GAs). A set of evaluation criteria that are used to route the HAZMAT vehicles was identified and assessed. The criteria considered are related to safety, costs and, more importantly, security. A GIS was employed to quantify the factors on each link in the network that contribute to the evaluation criteria for a possible route, while a GA was applied to efficiently determine the weights of the different factors in the hierarchical form, allowing for the computation of the relative total costs of the alternate routes. Therefore, each route can be quantified by a generalized cost function from which the suitability of the routes for HAZMAT transportation can be compared. The proposed route evaluation method was demonstrated on a typical portion of the road network in Singapore.  相似文献   
17.
A comparative study has been conducted to investigate the skill of four convection parameterization schemes, namely the Anthes–Kuo (AK), the Betts–Miller (BM), the Kain–Fritsch (KF), and the Grell (GR) schemes in the numerical simulation of an extreme precipitation episode over eastern Peninsular Malaysia using the Pennsylvania State University—National Center for Atmospheric Research Center (PSU-NCAR) Fifth Generation Mesoscale Model (MM5). The event is a commonly occurring westward propagating tropical depression weather system during a boreal winter resulting from an interaction between a cold surge and the quasi-stationary Borneo vortex. The model setup and other physical parameterizations are identical in all experiments and hence any difference in the simulation performance could be associated with the cumulus parameterization scheme used. From the predicted rainfall and structure of the storm, it is clear that the BM scheme has an edge over the other schemes. The rainfall intensity and spatial distribution were reasonably well simulated compared to observations. The BM scheme was also better in resolving the horizontal and vertical structures of the storm. Most of the rainfall simulated by the BM simulation was of the convective type. The failure of other schemes (AK, GR and KF) in simulating the event may be attributed to the trigger function, closure assumption, and precipitation scheme. On the other hand, the appropriateness of the BM scheme for this episode may not be generalized for other episodes or convective environments.  相似文献   
18.
Seaquake is a phenomenon where there are water disturbance at the sea, caused by earthquake or submarine eruption. The scope of this study focuses on tsunami simulation due to Manila Trench and Sulu Trench seaquake which is prone to harm Malaysia offshore areas. Manila Trench is a highly potential earthquake source that can generate tsunami in South China Sea. Meanwhile, Sulu Trench could be a threat to east of Sabah offshore areas. In this study, TUNA-M2 model was utilized to perform tsunami simulation at South China Sea and Sulu Sea. TUNA-M2 model applied Okada source model to create tsunami generation due to earthquake. It utilized linear shallow water equation during tsunami propagation with its radiant boundary condition. Five simulations performed at each study region. Forecast points at South China Sea areas were divided into three separate locations which are at the Peninsular Malaysia, west of Sabah and Sarawak offshore areas. Forecast points at Sulu Sea were focused at the east of Sabah offshore areas. This paper will present the simulation results of tsunami wave height and arrival time at various forecast points. The findings of this study show that the range of tsunami wave height at Sulu Sea is higher than that of South China Sea. The tsunami arrival time at Sulu Sea is less than South China Sea. It can be concluded that Sulu Sea poses worse tsunami threat than South China Sea to the Malaysian offshore areas.  相似文献   
19.
The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We have also compared two 10 m-pixel images acquired before and after the event to describe the extent and impact of an estimated volume of 5.45 × 106 m3 of block-and-ash flow deposits. An ash-rich pyroclastic surge escaped from one of the valley-confined block-and ash flows at 5 to 8 km distance from the crater and swept across the forest and tilled land on the SW side of the Bang River Valley. Downvalley, the temperature of the pyroclastic surge decreased and a mud-rich deposit coated the banks of the Bang River Valley. Thus, hazard mitigation at Semeru should combine: (1) continuous monitoring of the eruptive activity through an early-warning system, and (2) continuous remote sensing of the morphological changes in the drainage system due to the impact of frequent pyroclastic density currents and lahars.  相似文献   
20.
Active fire detection using satellite thermal sensors usually involves thresholding the detected brightness temperature in several bands. Most frequently used features for fire detection are the brightness temperature in the 4-/spl mu/m wavelength band (T/sub 4/) and the brightness temperature difference between 4- and 11-/spl mu/m bands (/spl Delta/T=T/sub 4/-T/sub 11/). In this letter, the task of active fire detection is examined in the context of a stochastic model for target detection. The proposed fire detection method consists of applying a decorrelation transform in the (T/sub 4/,/spl Delta/T) space. Probability density functions for the fire and background pixels are then computed in the transformed variable space using simulated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal data under different atmospheric humidity conditions and for cases of flaming and smoldering fires. The Pareto curve for each detection case is constructed. Optimal thresholds are derived by minimizing a cost function, which is a weighted sum of the omission and commission errors. The method has also been tested on a MODIS reference dataset validated using high-resolution SPOT images. The results show that the detection errors are comparable with the expected values, and the proposed method performs slightly better than the standard MODIS absolute detection method in terms of the lower cost function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号