OLSR (optimal link state routing) is one of the four basic routing protocols used in mobile ad hoc Networks by the MANET working group of IETF (Internet engineering task force). OLSR, a proactive routing protocol, is based on a multipoint relaying flooding technique to reduce the number of topology broadcast. OLSR uses periodic HELLO packets to neighbor detection. As introduced in Reference [1], the wormhole attack can form a serious threat in wireless Networks, especially against many ad hoc Network routing protocols and location-based wireless security systems. Here, a trust model to handle this attack in OLSR is provided and simulated in NS2. 相似文献
To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates. 相似文献
To decipher the origin of oxygen-deficient shelfal deposits is significant for tracing the distribution of marine source rocks
and interpreting the evolution of depositional environment. The origin of the Middle Permian Chihsia Formation in South China
remains a puzzle for long with its evident oxygen-deficient features but diverse benthos. This paper shows a typical Chihsian
depositional rhythm composed of the massive and the laminated limestones with ecological and geochemical features. Massive
bioclastic limestone from the rhythm was aerobic in paleoxygenation condition indicated by both the ecological and geochemical
features. However, a contradictory oxygenation was inferred for the “laminated” counterpart from the rhythm, with the ecological
signal being aerobic and the geochemical one being anoxic. The difference in ecological and geochemical indications was interpreted
as the instability of paleoxygenation condition in shelf environments, caused by an enhanced paleoproductivity. Rhythmic occurrence
of the oxygen-deficient condition might have been stemmed from paleo-Tethyan paleocurrents flowing across South China.
__________
Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6): 789–796 [译自: 地球科学—中国地质大学学报] 相似文献
Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.
Integrity monitoring for ambiguity resolution is of significance for utilizing the high-precision carrier phase differential positioning for safety–critical navigational applications. The integer bootstrap estimator can provide an analytical probability density function, which enables the precise evaluation of the integrity risk for ambiguity validation. In order to monitor the effect of unknown ambiguity bias on the integer bootstrap estimator, the position-domain integrity risk of the integer bootstrapped baseline is evaluated under the complete failure modes by using the worst-case protection principle. Furthermore, a partial ambiguity resolution method is developed in order to satisfy the predefined integrity risk requirement. Static and kinematic experiments are carried out to test the proposed method by comparing with the traditional ratio test method and the protection level-based method. The static experimental result has shown that the proposed method can achieve a significant global availability improvement by 51% at most. The kinematic result reveals that the proposed method obtains the best balance between the positioning accuracy and the continuity performance. 相似文献