Supergene jarosite-group minerals are widespread in weathering profiles overlying Pb-Zn sulfide ores at Xitieshan, northern Tibetan Plateau, China. They consist predominantly of K-deficient natrojarosite, with lesser amounts of K-rich natrojarosite and plumbojarosite. Electron microprobe (EMP) analyses, scanning electron microcopy (SEM) investigation, and X-ray mapping reveal that the jarosite-group minerals are characterized by spectacular oscillatory zoning composed of alternating growth bands of K-deficient and K-bearing natrojarosite (K2O >1 wt.%). Plumbojarosite, whenever present, occurs as an overgrowth in the outermost bands, and its composition can be best represented by K0.29Na0.19Pb0.31Fe2.66Al0.22(SO4)1.65(PO4)0.31(AsO4)0.04(OH)7.37. The substitution of monovalent for divalent cations at the A site of plumbojarosite is charge balanced by the substitution of five-valent for six-valent anions in XO4 at the X site. Thermogravimetric analysis (TGA) of representative samples reveal mass losses of 11.46 wt.% at 446.6 °C and 21.42 wt.% at 683.4 °C due to dehydroxylation and desulfidation, respectively. TGA data also indicate that the natrojarosite structure collapses at 446.6 °C, resulting in the formation of NaFe(SO4)2 and minor hematite. The decomposition products of NaFe(SO4)2 are hematite and Na2SO4. Powder X-ray diffraction (XRD) analyses show that the jarosite-group minerals have mean unit-cell parameters of a?=?7.315 Å and c?=?016.598 Å. XRD and EMP data support the view that substitutions of Na for K in the A site and full Fe occupancy in the B site can considerably decrease the unit-cell parameter c, but only slightly increase a. The results from this study suggest that the observed oscillatory zoning of jarosite-group minerals at Xitieshan resulted mainly from substitutions of K for Na at the A site and P for S at the X site. 相似文献
Strata behaviors are mainly affected by regional geodynamic background. The influence of rock mass stress and energy distribution on strata behaviors in the Tongxin mine is studied in terms of regional tectonic movement, seismic activity and tectonic stress field. The results show that the extrusion lifting movement of Kouquan fault adjacent to the Tongxin mine results in the stress concentration in the rock of the Carboniferous coal bed and accumulation of a large amount of elastic energy and forms structural background of Tongxin mine. Due to various seismic activities in the mine area, the strain energy is known to reach much higher levels, up to 0.5×108J1/2. Since the stratigraphic structure is sensitive to the mining operation, the strain energy could cause strong strata behaviors. A special geological structure model of the Tongxin mine is established based on the geodynamic division method. The distribution of regional structure stress field is determined by the rock mass stress analysis system. Based on this model, Tongxin mine is divided into five areas with high stress, eight areas with low stress and eight areas with gradient stress. The strong strata behaviors mostly occur in high stress areas. These results could provide guidance to predict the strength of regional or mine pressure and control strata behavior in different areas. 相似文献
To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates. 相似文献
This paper presents a case study on the Mogangling landslide and its characteristics and geological mechanism. The Mogangling landslide is a giant rock landslide located at the intersection of Dadu river and Moxi river. It is a landslide triggered by an earthquake with large magnitude that occurred in 18th century. Based on detailed site investigation, it shows the Mogangling landslide developed in the Kangding complex strata, composed of completely decomposed aggregates of massive-block stone, debris and soil with some gravels, pebbles and sand layer found distributed in front of the landslide. The control factor of the deformation of this landslide is the combined effect of Detuo fault which is located under the slope, and the regional stress formed along structural planes as well as the free surfaces formed by river cutting. Therefore, when the Kangding-Moxi earthquake (Ms =7.7) occurred on 1st June, 1786, due to seismic shaking, topographic amplification effects and back slope effects, the Mogangling landslide occurred. The Dadu River is the most important river for hydropower development in China; large-scale seismic landslides along the Dadu River are the most important geological issue during the construction of hydropower stations. Therefore, this research is important from the point of view of economic and social benefits. 相似文献
In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献