首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9218篇
  免费   2072篇
  国内免费   2962篇
测绘学   1192篇
大气科学   1849篇
地球物理   2099篇
地质学   5228篇
海洋学   1421篇
天文学   298篇
综合类   920篇
自然地理   1245篇
  2024年   85篇
  2023年   230篇
  2022年   694篇
  2021年   780篇
  2020年   582篇
  2019年   773篇
  2018年   730篇
  2017年   668篇
  2016年   723篇
  2015年   688篇
  2014年   729篇
  2013年   735篇
  2012年   823篇
  2011年   717篇
  2010年   716篇
  2009年   610篇
  2008年   545篇
  2007年   526篇
  2006年   376篇
  2005年   302篇
  2004年   233篇
  2003年   167篇
  2002年   167篇
  2001年   188篇
  2000年   182篇
  1999年   219篇
  1998年   139篇
  1997年   146篇
  1996年   118篇
  1995年   127篇
  1994年   91篇
  1993年   100篇
  1992年   77篇
  1991年   60篇
  1990年   39篇
  1989年   29篇
  1988年   25篇
  1987年   14篇
  1986年   20篇
  1985年   15篇
  1984年   10篇
  1983年   10篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   2篇
  1958年   6篇
  1957年   3篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
171.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   
172.
Flow in a single fracture (SF) is an important research subject in groundwater hydrology, hydraulic engineering, radioactive nuclear waste repository and geotechnical engineering. An abruptly changing aperture is a unique type of SF. This study discusses the relation between the values of the critical Reynolds number (Rec) for the onset of symmetry breaking of flow and the expansion ratio (E) of SF, which is defined as the ratio between the outlet (D) and inlet (d) apertures. This study also investigates the effect of inlet aperture d on Rec for flow in an SF with abruptly changing apertures (SF‐ACA) using the finite volume method. Earlier numerical and experimental results showed that flow is symmetric in respect to the central plane of the SF‐ACA at small Reynolds number (Re) but becomes asymmetric when Re is sufficiently large. Our simulations show that the value of Rec decreases with the increasing E, and the relationship between the logarithm of Rec and E can be described accurately using either a quadratic polynomial function or a logarithmic function. However, the relationship of Rec and d for a given E value is vague, and Rec becomes even less sensitive to d when E increases. This study also reveals that the hydraulic gradient (J) and flow velocity (v) follow a super‐linear relationship that can be fitted almost perfectly by the Forchheimer equation. The inertial component (Ji) of J increases monotonically with Re, whereas the viscous component (Jv) of J decreases monotonically with Re. The Re value corresponding to equal inertial and viscous components of J (named as the transitional point Re) decreases when E increases, and such a transitional point Re should be closely related to the critical Reynolds number Rec, although a rigorous theoretical proof is not yet available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
173.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   
174.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
175.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   
176.
177.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
178.
In the Tongshankou porphyry deposit (SE Hubei Province, South China), three types of K‐feldspars are recognized: (I) the phenocryst type in the porphyry that crystalized during the magmatic stage, (II) the megacryst type and (III) the vein type in the altered porphyry and orebody that was produced by hydrothermal fluids. A detailed in‐situ analysis of trace elements and Sr–Pb isotopes was carried out on K‐feldspars in an attempt to unravel their formation processes and to trace the element sources during potassic alteration. The Type III K‐feldspars show lower Sr contents and Sr‐isotope ratios but higher Pb contents and Pb‐isotope ratios than the Type I and II K‐feldspars, possibly reflecting a contribution from the country carbonate rocks with less radiogenic Sr but more radiogenic Pb sources, and indicate that the ore‐forming fluids and materials may have been partially derived from external sources such as the host sedimentary rocks during the early potassic alteration stage.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号