全文获取类型
收费全文 | 3263篇 |
免费 | 93篇 |
国内免费 | 92篇 |
专业分类
测绘学 | 70篇 |
大气科学 | 402篇 |
地球物理 | 812篇 |
地质学 | 1006篇 |
海洋学 | 648篇 |
天文学 | 302篇 |
综合类 | 46篇 |
自然地理 | 162篇 |
出版年
2023年 | 12篇 |
2022年 | 22篇 |
2021年 | 48篇 |
2020年 | 47篇 |
2019年 | 63篇 |
2018年 | 134篇 |
2017年 | 124篇 |
2016年 | 139篇 |
2015年 | 87篇 |
2014年 | 171篇 |
2013年 | 220篇 |
2012年 | 140篇 |
2011年 | 203篇 |
2010年 | 190篇 |
2009年 | 190篇 |
2008年 | 164篇 |
2007年 | 176篇 |
2006年 | 146篇 |
2005年 | 122篇 |
2004年 | 105篇 |
2003年 | 96篇 |
2002年 | 98篇 |
2001年 | 76篇 |
2000年 | 79篇 |
1999年 | 55篇 |
1998年 | 45篇 |
1997年 | 41篇 |
1996年 | 25篇 |
1995年 | 37篇 |
1994年 | 19篇 |
1993年 | 17篇 |
1992年 | 21篇 |
1991年 | 18篇 |
1990年 | 18篇 |
1989年 | 13篇 |
1988年 | 14篇 |
1987年 | 24篇 |
1986年 | 15篇 |
1985年 | 15篇 |
1984年 | 28篇 |
1983年 | 31篇 |
1982年 | 22篇 |
1981年 | 17篇 |
1980年 | 25篇 |
1979年 | 12篇 |
1978年 | 7篇 |
1977年 | 16篇 |
1975年 | 15篇 |
1974年 | 10篇 |
1973年 | 7篇 |
排序方式: 共有3448条查询结果,搜索用时 11 毫秒
181.
Fetch and Footprint of Turbulent Fluxes over Vegetative Stands with Elevated Sources 总被引:1,自引:0,他引:1
Xuhui Lee 《Boundary-Layer Meteorology》2003,107(3):561-579
In this study, Raupach's localized near-field (LNF)theory is combined with appropriate parameterizations ofthe turbulence inside a canopy to investigate how airstability and source configuration influence the fluxfootprint and flux adjustment with fetch in theroughness sublayer. The model equations are solvednumerically. The flux footprint from the LNF predictionis in general more contracted than the prediction basedon the inertial sublayer similarity functions. Invery unstable conditions, the near-field effect causes thefootprint of the elevated canopy source to locatefurther upwind than that of the ground-level source, andthe combined footprint can become negative in situationswhere the two sources are of opposite sign. The fluxfootprint and flux adjustment with fetch in theroughness sublayer are sensitive to source configurationand the parameters specifying wind speed and theLagrangian time scale inside the canopy. 相似文献
182.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening. 相似文献
183.
An object-oriented framework called GIS and Hydrologic Information System Modeling Object (GHISMO) that is tightly coupled with a prototype geographic information system (GIS), is presented in this research. The proposed GHISMO framework is used to simulate a hydrologic system on the base of the storage-release concept and with multiple weather data such as gage and NEXRAD data. Both quantitative and qualitative results of simulation for the Pleasant Run Creek and Little Buck Creek watersheds in Indiana (USA) demonstrate the method prospects. 相似文献
184.
Miyeon Lee 《Asia-Pacific Journal of Atmospheric Sciences》2014,50(1):585-594
PM2.5 is a big issue as it is considerably more harmful than other sizes of particulate matter. World Health Organization (WHO) recommends 25 μg m?3 as the daily average concentration, and 10 μg m?3 per day as an annual average. To keep up with global trends, it is first necessary to understand the current status and characteristics of PM2.5 concentrations in Korea. Using the PM2.5 data measured by Seoul Metropolitan City from November 2005 to March 2012, the author analyzed its statistical characteristics and correlations with other air pollutants. For the time period from 2005 to 2012, the annual average concentration of PM2.5 was 27 μg m?3, three times the WHO standard. Also, the daily average PM2.5 concentration of 215 days per year also exceeded the WHO standard. However, the number days exceeding the Korean daily average standard of 50 μg m?3 to be enacted in 2014 was only three. PM2.5 concentration had a high correlation (r = 0.84) with PM10, and also showed high correlations with gaseous pollutants, such as SO2, NO2, and CO, but not O3. This study suggests that the Korean government should strengthen their standard to match the criteria used by WHO. 相似文献
185.
186.
Crop models are useful tools for assessing the impact of climate change on crop production. The dynamic crop-growth model, CERES-Wheat is used to examine crop management responses, including yield, under six climate change scenarios for the years 2025 and 2050 on the Estate of Imperial College at Wye, Kent, U.K. Sensitivity analysis shows a dry matter yield decrease in response to increases in temperature alone. CERES-Wheat was then constrained to assess the crop performance under water-limited production scenarios with different soils, and the results show that crop grain yield actually increases, largely due to CO2 fertilisation leading to increased rates of photosynthesis. Different management practices (planting dates and nitrogen application) were applied to find the best adaptation strategies. In general, `early' sowing (10th September) had the highest simulated yield, and `late' sowing (10th November) the lowest. For the soils tested, the highest and sustained crop production was obtained from Hamble soils (silt loam) compared with either the Fyfield (sandy) or Denchworth (clay). Adding nitrogen and other fertilisers would likely be necessary to take full advantage of the CO2 fertilisationeffect and to compensate, in some cases, for yield losses caused by climate change where water shortage becomes serious. 相似文献
187.
June-Yi Lee Bin Wang Q. Ding K.-J. Ha J.-B. Ahn A. Kumar B. Stern O. Alves 《Climate Dynamics》2011,37(5-6):1189-1203
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America). 相似文献
188.
Myong-In Lee Siegfried D. Schubert Dongmin Kim 《Asia-Pacific Journal of Atmospheric Sciences》2011,47(3):245-253
This study examines the tropical storms simulated in the Modern-Era Retrospective analysis for Research and Applications (MERRA) global atmospheric reanalysis for the recent 12 years (1998–2009), focusing on the tropical storm activity over the Northwestern Pacific. For validation, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset is used as an observational counterpart. Climatological-mean features of the tropical storm genesis, tracks and their maximum intensity are the primary interests in this study. Regarding the genesis location of tropical storms, MERRA is reasonable in resolving major development regions over the South China Sea and the Northwestern Pacific close to the Philippines. The seasonal variation of the number of storms is also reproduced in a realistic way in MERRA, with peak values occurring from July to September. In addition, MERRA tends to reproduce the observed interannual variation of the number of tropical storms during the 12-years, though with a limited accuracy. The simulated paths toward higher latitudes are also reasonable in MERRA, where the reanalysis corresponds well with the observations in resolving frequent paths of westward moving storms and recurving storms toward the northeast. Regarding the intensity, MERRA captures the linear relationship between the minimum center pressure and the maximum wind speed near the surface at the maximum development. Some discrepancies from the observed features are found in the reanalysis, such as less frequent development of storms over the South China Sea and less frequent paths over this region. The reanalysis also does not attain the observed maximum intensity for the resolved tropical storms, particularly underestimating the center pressure. These deficiencies are likely related to limitations in the horizontal resolution and the parameterized physics of the data assimilation system. 相似文献
189.
Cheol-Hee Kim Lim-Seok Chang Jeong-Soo Kim Fan Meng Mizuo Kajino Hiromasa Ueda Yuanhang Zhang Hye-Young Son Youjiang He Jun Xu Keiichi Sato Chang-Keun Song Soo-Jin Ban Tatsuya Sakurai Zhiwei Han Lei Duan Suk-Jo Lee Shang-Gyoo Shim Young Sunwoo Tae-Young Lee 《Asia-Pacific Journal of Atmospheric Sciences》2011,47(4):399-411
Three comprehensive acid deposition models were used to simulate the sulfur concentrations over northeast Asia over the period covering entire year of 2002, and discussed the aggregated uncertainties and discrepancies of the three models. The participating models are from the countries participating in the project of Longrange Transboundary Air Pollutants in Northeast Asia (LTP): China, Japan and Korea. The Eulerian Model-3/CMAQ (by China), Regional Air Quality Model (RAQM, by Japan), and Comprehensive Acid Deposition Model (CADM, by Korea) were employed by each country with common emissions data established by the administrative agencies of China, Japan and Korea. The episodic simulation results between 1 to 15, March 2002 are also presented, during which aircraft measurements were carried out over the Yellow sea. The episodic results show both a wide short-term variability in simulations against measurements, and maximum concentration differences of 3~5 times among the three models, requiring that further attention before confidence among the three models can be claimed for short-term simulations. However, the year-long cumulative simulations showed almost the same general features, with lower aggregated uncertainties between the three models, produced by the long term integration over northeast Asia. 相似文献
190.
Elizabeth Hooper Lee Chapman Andrew Quinn 《Theoretical and Applied Climatology》2014,117(1-2):303-316
Although the fundamental traffic diagram provides the characteristics of a typical road traffic speed–flow relationship, little consideration has been given to the impact of adverse weather conditions on the relationship and the subsequent impact on local speed–flow. For the first time, this study uses precipitation radar along with a state-of-the art traffic information system to ascertain the relationship between speed–flow and precipitation on a UK transport corridor at the local (junction to junction) scale. It is evident that precipitation causes a significant reduction in speed and maximum flow on many links of the corridor as well as a downward reduction in the overall speed-flow relationship. With increased instances of heavy precipitation predicted in the UK as a result of climate change, these findings highlight the subsequent impact on journey travel times and associated economic costs. 相似文献