首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7085篇
  免费   1110篇
  国内免费   1434篇
测绘学   429篇
大气科学   1264篇
地球物理   1914篇
地质学   3230篇
海洋学   902篇
天文学   491篇
综合类   706篇
自然地理   693篇
  2024年   32篇
  2023年   99篇
  2022年   290篇
  2021年   337篇
  2020年   270篇
  2019年   308篇
  2018年   362篇
  2017年   316篇
  2016年   418篇
  2015年   351篇
  2014年   404篇
  2013年   370篇
  2012年   376篇
  2011年   416篇
  2010年   407篇
  2009年   433篇
  2008年   397篇
  2007年   350篇
  2006年   284篇
  2005年   273篇
  2004年   220篇
  2003年   198篇
  2002年   229篇
  2001年   208篇
  2000年   215篇
  1999年   273篇
  1998年   248篇
  1997年   200篇
  1996年   222篇
  1995年   162篇
  1994年   164篇
  1993年   162篇
  1992年   139篇
  1991年   76篇
  1990年   64篇
  1989年   57篇
  1988年   46篇
  1987年   42篇
  1986年   32篇
  1985年   17篇
  1984年   19篇
  1983年   18篇
  1982年   29篇
  1981年   20篇
  1980年   18篇
  1979年   6篇
  1978年   9篇
  1976年   9篇
  1973年   6篇
  1958年   4篇
排序方式: 共有9629条查询结果,搜索用时 15 毫秒
991.
贵州夏季暴雨的气候特征   总被引:3,自引:0,他引:3  
 利用贵州52个测站的1961-2006年历年夏季(6-8月)逐日降水资料,分析了贵州夏季暴雨的时空分布特征、周期振荡及其突变特征。结果表明:46 a来贵州夏季暴雨量呈增加趋势,并存在明显的年际、年代际变化特征;暴雨日数和暴雨量在1985年发生突变;暴雨日数和暴雨量均存在15 a和准10 a的周期振荡;暴雨日数和暴雨量EOF分解的第一特征向量的荷载场空间分布基本一致,表明全省呈偏多(少)的一致型同位相分布。  相似文献   
992.
 通过对比IPCC历次评估报告中全球碳循环的收支发现,尽管评估报告在估算各主要碳库及其间的通量时差别不大,但表层至中深层海水间溶解无机碳通量却存在巨大差异。利用δ13C的收支平衡检验了这一通量的适用范围,结果表明:IPCC 1996年和2007年评估报告对此通量估计过大,而1990年和2001年评估报告估计偏小。  相似文献   
993.
The first comprehensive calibration and mapping of the thermal microwave emission from Titan's surface is reported based on radiometric data obtained at 2.2-cm wavelength by the passive radiometer included in the Cassini Radar instrument. The data reported were accumulated from 69 separate observational segments in Titan passes from Ta (October 2004) through T30 (May 2007) and include emission from 94% of Titan's surface. They are diverse in the key observing parameters of emission angle, polarization, and spatial resolution, and their reduction into calibrated global mosaic maps involved several steps. Analysis of the polarimetry obtained at low to moderate resolution (50+ km) enabled integration of the radiometry into a single mosaic of the equivalent brightness temperature at normal incidence with a relative precision of about 1 K. The Huygens probe measurement of Titan's surface temperature and radiometry obtained on Titan's dune fields allowed us to infer an absolute calibration estimated to be accurate to a level approaching 1 K. The results provide evidence for a surface that is complex and varied on large scales. The radiometry primarily constrains physical properties of the surface, where we see strong evidence for subsurface (volume) scattering as a dominant mechanism that determines the emissivity, with the possibility of a fluffy or graded-density surface layer in many regions. The results are consistent with, but not necessarily definitive of a surface composition resulting from the slow deposition and processing of organic compounds from the atmosphere.  相似文献   
994.
We present results of several years of research and data processing aimed at modelling the Mars gravity field and its longest wavelength time variations. The new solution includes tracking data from Mars Global Surveyor (MGS) from 1998 to 2006 (end of mission) and from Mars Odyssey from 2002 to the spring of 2008; this is the longest analyzed data set from these two orbiter missions as compared to previous works. The new model has been obtained by a team working in Europe, independently from the works of groups at NASA Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), also with totally independent software. Observations consist in two and three-way Doppler measurements (also one way for MGS), and range tracking data collected by the Deep Space Network and have been processed in 4 day arcs, taking into account all disturbing forces of gravitational and non-gravitational origins; for each arc the state vector, drag and solar pressure model multiplying factors, and angular momentum dump parameters are adjusted. The static field (MGGM08A) is represented in spherical harmonics up to degree and order 95 and is very close to previously published models (in terms of spectral components and also over specific features); correlations with the global Mars topography are established and apparent depths of compensation by degree are derived. Lumped zonal harmonics of degree two and three are solved for every 10 days, exhibiting variations in line with previous results (including authors’ ones); the work also shows the difficulty of finding clean signatures (annual and semi-annual) for the zonal coefficient of second degree. The k2 Love number is also derived from the ensemble of data, as well as from subsets of them; values between 0.110 and 0.130 are found, which are consistent with the existence of a Martian fluid core of significant radius.  相似文献   
995.
996.
Based on the Königl's inhomogeneous jet model, we estimate the jet parameters, such as bulk Lorentz factor Γ, viewing angle θ and electron number density n e from radio very long-baseline interferometry and X-ray data for a sample of active galactic nuclei (AGNs) assuming that the X-rays are from the jet rather than the intracluster gas. The bulk kinetic power of jets is then calculated using the derived jet parameters. We find a strong correlation between the total luminosity of broad emission lines and the bulk kinetic power of the jets. This result supports the scenario that the accretion process is tightly linked with the radio jets, though how the disc and jet are coupled is not revealed by present correlation analysis. Moreover, we find a significant correlation between the bulk kinetic power and radio extended luminosity. This implies that the emission from the radio lobes is closely related with the energy flux transported through jets from the central part of AGNs.  相似文献   
997.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   
998.
Mayall Ⅱ = G1 is one of the most luminous globular clusters (GCs) in M31. Here, we determine its age and mass by comparing multicolor photometry with theoretical stellar population synthesis models. Based on far- and near-ultraviolet GALEX photometry, broad-band UBVRI, and infrared JHKs 2MASS data, we construct the most extensive spectral energy distribution of G 1 to date, spanning the wavelength range from 1538 to 20 000A. A quantitative comparison with a variety of simple stellar population (SSP) models yields a mean age which is consistent with G1 being among the oldest building blocks of M31 and having formed within ~1.7 Gyr after the Big Bang. Irrespective of the SSP model or stellar initial mass function adopted, the resulting mass estimates (of order 10^7M⊙) indicate that GI is one of the most massive GCs in the Local Group. However, we speculate that the cluster's exceptionally high mass suggests that it may not be a genuine GC. Our results also suggest that G1 may contain, on average, (1.65±0.63) × 10^2L⊙ far-ultraviolet-bright, hot, extreme horizontal-branch stars, depending on the adopted SSP model. In addition, we demonstrate that extensive multi-passband photometry coupled with SSP analysis enables one to obtain age estimates for old SSPs that have similar accuracies as those from integrated spectroscopy or resolved stellar photometry, provided that some of the free parameters can be constrained independently.  相似文献   
999.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   
1000.
In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5R e.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号