首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1099篇
  免费   36篇
  国内免费   7篇
测绘学   19篇
大气科学   105篇
地球物理   256篇
地质学   339篇
海洋学   82篇
天文学   227篇
综合类   1篇
自然地理   113篇
  2021年   11篇
  2020年   10篇
  2019年   10篇
  2018年   16篇
  2017年   12篇
  2016年   20篇
  2015年   20篇
  2014年   14篇
  2013年   60篇
  2012年   29篇
  2011年   42篇
  2010年   37篇
  2009年   54篇
  2008年   40篇
  2007年   33篇
  2006年   37篇
  2005年   33篇
  2004年   31篇
  2003年   38篇
  2002年   27篇
  2001年   25篇
  2000年   37篇
  1999年   20篇
  1998年   22篇
  1997年   26篇
  1996年   14篇
  1995年   21篇
  1994年   25篇
  1993年   22篇
  1992年   14篇
  1991年   11篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   15篇
  1986年   9篇
  1985年   22篇
  1984年   24篇
  1983年   27篇
  1982年   28篇
  1981年   20篇
  1980年   13篇
  1979年   19篇
  1978年   16篇
  1977年   16篇
  1976年   13篇
  1975年   13篇
  1974年   16篇
  1973年   10篇
  1972年   11篇
排序方式: 共有1142条查询结果,搜索用时 15 毫秒
11.
Gassy sediments are detectable acoustically in subbottom profiles of Canada's Fraser Delta slope and prodelta areas. Interstitial gas is typically represented by zones of acoustic turbidity on high-resolution seismic profiles and by gas brightening on air-gun profiles. The top of the acoustically turbid zone is generally highest within the sediment column closest to the river mouths and lies within 10 ms (two-way travel time) of the sea floor in a nearly continuous area that covers over 530 km2. Most of the gas is believed to be biogenic in origin, although thermogenic gas derived from underlying Tertiary sedimentary rocks may be present in places.  相似文献   
12.
The process of Differential Roughness Secondary Flow (DRSF), hitherto little recognized, recently was demonstrated in a wind tunnel and in a flume. It is suggested here the DRSF may, in the natural environment, play an important part in the persistence and sharp definition of sand ribbons, previously initiated by other processes. In 1980 Karl described a series of sand ribbons, alternating with exposed substrate, which he attributed to the effect of Langmuir circulations. Although Langmuir Circulation Secondary Flow (LCSF) may indeed, in some cases, initiate sand ribbons, the sharply-defined edges typical of these features are explained better by DRSF.  相似文献   
13.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
14.
Chesapeake Bay is a large and productive estuary that has received close scrutiny in recent years because of indications that its water quality and biota have been damaged by man's activities. Data on primary production for the estuary as a whole, however, are surprisingly sparse. We describe here the distribution of photosynthetic carbon assimilation by phytoplankton in Chesapeake Bay, and relate productivity patterns to hydrographic characteristics of the estuary. Between March 1982 and April 1983, a series of four cruises was conducted on Chesapeake Bay, and two cruises on the urbanized Delaware Bay for comparison. The upper Chesapeake and Delaware were highly turbid with high concentrations of suspended particulate matter and dissolved inorganic nutrients. Low chlorophyll concentrations were usually found in these areas of high turbidity, despite the abundance of nutrients, suggesting light limitation. Application of Wofsy's (1983) model of phytoplanton growth confirmed this suggestion. Chlorophyll and productivity maxima usually occurred seaward of the turbidity maxima where light penetration increased and suffient nutrients were present to support active phytoplankton growth. Further seaward of the chlorophyll maxima in the Chesapeake, the photic zone depth increased, concentrations of nutrients decreased, and phytoplankton biomass decreased, suggesting that nutrient availability, rather than light, controlled phytoplankton growth in the lower portion of the estuary. In contrast to the Chesapeake, Delaware Bay was more turbid, had generally higher nutrient concentrations, and was lower in phytoplankton productivity. The chlorophyll maxima and region of rapid phytoplankton growth occurred further toward the lower estuary and shelf regions in Delaware Bay because the high turbidity extended further seaward. Nutrients were never depleted at the shelf end of the estuary sufficiently to retard phytoplankton growth. Photosynthesis-irradiance (P-I) curves from simulated in situ and constant intensity incubations showed a strong correlation of the light-limited slope (aB) with the light-saturated rate ( ) on each cruise. Spatial variations in corresponded to patterns of phytoplankton abundance, as did integral production (PP) and carbon-based growth rates (μC, μm), and photosynthetic parameters varied significantly with temperature.  相似文献   
15.
A vertically integrated dynamic ice sheet model is coupled to the atmosphere-ocean-sea ice-land surface climate model recently developed by Wang and Mysak (2000). The background lateral (east-west) ice sheet discharge rate used by Gallee et al. (1992) is reduced and the planetary emissivity is increased (to parameterize the cooling effect of a decrease of the atmospheric CO2 concentration), in order to build up substantial ice sheets during a glacial period and hence set the stage for ice sheet-thermohaline circulation (THC) interactions. The following iceberg calving scheme is then introduced: when the maximum model height of the North American ice sheet reaches a critical value (2400 m), a prescribed lateral discharged rate is imposed on top of the background discharge rate for a finite time. Per a small prescribed discharge rate, repeated small iceberg calving events occur, which lead to millennial-scale climate cycles with small amplitudes. These are a crude representation of Dansgaard-Oeschger oscillations. Over one such cycle, the zonally averaged January surface air temperature (SAT) drops about 1.5°C at 72.5°N. However, a large prescribed lateral discharge rate leads to the shut down of the THC. In this case, the January SAT drops about 5°C at 72.5°N, the sea ice extent advances equatorward from 57.5° to 47.5°N and the net ice accumulation rate at the grid of maximum ice sheet height is reduced from 0.24 to 0.15 m/y. Since data strongly suggest that a collapsed THC was not a steady state during the last glacial, we restore the THC by increasing the vertical diffusivity in the North Atlantic Ocean for a finite time. The resulting climate cycles associated with conveyor-on and conveyor-off phases have much larger amplitudes; furthermore, the strong iceberg calving events lead to a larger loss of ice sheet mass and hence the period of the oscillations is longer (several thousand years). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
16.
Abstract. The proximate composition of the various components of Posidonia oceanica is given in terms of gravimetric and energetic level and amount of plants from 2 depths at Port-Cros (Var. France). The level of proximate constituents differed little between the leaves (regardless of age) and the roots, but the rhizome contained much more soluble carbohydrate and less structural carbohydrate and ash. Because of this, the energy level in the leaves was more in terms of organic material and less in terms of total material than the energy level in the rhizome. The leaves of a P. oceanica shoot at 2 m depth in July contained 1.6 g organic material. 29.0 kJ. The weight and energy of the soluble carbohydrate in the rhizome from the base of the leaves to the 18th sheath scale decreased by ca. 40% from October to March and increased by ca. 100% from March to July.  相似文献   
17.
Two widely-used techniques to estimate the volume of remaining oil and gas resources are discovery process modeling and geologic assessment. Both were used in a recent national assessment of oil and gas resources of the United States. Parallel estimates were obtained for 27 provinces. Geological-based estimates can typically see into areas not available to discovery process models (that is areas with little or no exploration history) and thus, on average, yield higher estimates. However, a linear relation does exist between the mean estimates obtained from these two methods. In addition, other variables were found in a multiple regression model that explained much of the difference. Thus, it is possible to perform discovery process modeling and adjust the estimates to yield results that might be expected from geological-based assessments.  相似文献   
18.
Major-element and REE compositions of 14 diamondiferous eclogites from the Udachnaya kimberlite in Yakutia, Siberia have been determined by electron microprobe and secondary ion mass spectrometer (SIMS). Based on previous clinopyroxene classification schemes (e.g., Taylor and Neal 1989), all of these eclogite xenoliths belong to Group B/C, although some of the garnet compositions and mineral REE abundances are inconsistent with the indicated groups. This demonstrates the inadequacy of the classification scheme based on African eclogites for application to Siberian samples. Because of the coarse grain size of the Udachnaya nodules, meaningful modal abundances could not be obtained. However, reconstructed REE compositions using various garnet: clinopyroxene ratios demonstrate relative insensitivity to changes in mode for common eclogitic assemblages. Many of these reconstructed REE compositions show LREE depletions. Some depletions are consistent with an origin (either directly or through partial melting) as normal or Type-I ocean floor basalt. Others, however, require material of eclogitic or pyroxenitic affinities to undergo partial melting; this facilitates the depletion of LREE while leaving the HREE at nearly original levels. Many of the eclogites of South Africa are consistent with a protolith of anomalous or Type II ocean floor basalt. This fundamental difference between the two regions is the likely cause of the inconsistencies with the chemicallybased classification.  相似文献   
19.
This study discusses the results of comprehensive time-dependent, three-dimensional numerical modelling of the circulation in the middle atmosphere obtained with the GFDL SKYHI troposphere-stratosphere-mesosphere general circulation model (GCM). The climate in a long control simulation with an intermediate resolution version (3° in horizontal) is briefly reviewed. While many aspects of the simulation are quite realistic, the focus in this study is on remaining first-order problems with the modelled middle atmospheric general circulation, notably the very cold high latitude temperatures in the Southern Hemisphere (SH) winter/spring, and the virtual absence of a quasi-biennial oscillation (QBO) in the tropical stratosphere. These problems are shared by other extant GCMs. It was noted that the SH cold pole problem is somewhat ameliorated with increasing horizontal resolution in the model. This suggests that improved resolution increases the vertical momentum fluxes from the explicitly resolved gravity waves in the model, a point confirmed by detailed analysis of the spectrum of vertical eddy momentum flux in the winter SH extratropics. This result inspired a series of experiments with the 3° SKYHI model modified by adding a prescribed zonally-symmetric zonal drag on the SH winter westerlies. The form of the imposed momentum source was based on the simple assumption that the mean flow drag produced by unresolved waves has a spatial distribution similar to that of the Eliassen-Palm flux divergence associated with explicitly resolved gravity waves. It was found that an appropriately-chosen drag confined to the top six model levels (above 0.35 mb) can lead to quite realistic simulations of the SH winter flow (including even the stationary wave fields) through August, but that problems still remain in the late-winter/springtime simulation. While the imposed momentum source was largely confined to the extratropics, it produced considerable improvement in the simulation of the equatorial semiannual oscillation, with both the easterly and westerly phases being somewhat more intense than in the control simulation. A separate experiment was conducted in which the SKYHI model was simplified so that it had no topography and so that the seasonal cycle was frozen in perpetual equinox conditions. These changes result in a model that has much reduced interhemispheric asymmetry. This model spontaneously produces a long period mean flow oscillation of considerable amplitude in the tropical upper stratopause. The implication of this result for the general issue of obtaining a QBO in comprehensive GCMs is discussed.  相似文献   
20.
Ground-based observations of Venus were made with a 5-cm drive Michelson interferometer during December 1970 and December 1973. The thermal emission spectrum of the central portion of the apparent disk was recorded from 450–1250 cm?1 with an apodized spectral resolution of 0.25 cm?1. All statistically significant sharp line absorption features in the spectrum have been identified with gaseous CO2. Comparison between the observed spectrum and a synthetic spectrum computed from a model atmosphere, assuming gaseous CO2 and a sulfuric acid haze as opacity sources, indicates good agreement. A broad diffuse absorption feature associated with the sulfuric acid haze is evident in the 870- to 930 cm?1 region. With the exception of the rotational lines of the 927-cm?1 CO2 band, the above feature appears as a continuum down to 0.25 cm?1 resolution. In the 750- to 1250-cm?1 range, the spectrum exhibits moderate thermal contrast with maximum brightness temperatures of 234–238°K occurring near 825 cm?1. These temperatures are in general agreement with previous measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号