首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   14篇
  国内免费   6篇
测绘学   16篇
大气科学   65篇
地球物理   140篇
地质学   222篇
海洋学   57篇
天文学   132篇
综合类   3篇
自然地理   41篇
  2022年   4篇
  2021年   3篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   14篇
  2016年   10篇
  2015年   20篇
  2014年   10篇
  2013年   20篇
  2012年   22篇
  2011年   33篇
  2010年   30篇
  2009年   33篇
  2008年   31篇
  2007年   47篇
  2006年   22篇
  2005年   27篇
  2004年   32篇
  2003年   24篇
  2002年   16篇
  2001年   16篇
  2000年   7篇
  1999年   8篇
  1998年   8篇
  1997年   12篇
  1996年   7篇
  1995年   10篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   11篇
  1986年   8篇
  1985年   17篇
  1984年   13篇
  1983年   7篇
  1982年   11篇
  1981年   12篇
  1980年   7篇
  1979年   5篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1973年   6篇
  1971年   4篇
排序方式: 共有676条查询结果,搜索用时 15 毫秒
111.
The Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn’s F ring since July 2004. This work nearly doubles the number of features reported by Esposito et al. (Esposito, L.W. et al. [2008]. Icarus 194, 278–289). As the number of statistically significant features has grown, it has become useful to classify them for the purposes of cataloging. We define three classes: Moonlet, Icicle, and Core, which visually classify the shapes of features seen to date in the occultation profiles of Saturn’s F ring. Two features fall into the Moonlet class. Each is opaque in its occultation, which makes them candidates for solid objects. A majority of features are classified as Icicles, which partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Finally, the variety of core region shapes displays how even the general shape of the F ring is ever-changing. The core region of the F ring (typically ~10 km wide) usually has a smooth U-shape to it, but the core region takes the shape of Ws and Vs in some occultation profiles. Our lengthy observing campaign reveals that Icicles are likely transient clumps, moonlets are possible solid objects, and cores show the variety of F ring morphology. We suggest that icicles may evolve into moonlets, which are an order of magnitude less abundant.  相似文献   
112.
Cassini UVIS star occultations by the F ring detect 13 events ranging from 27 m to 9 km in width. We interpret these structures as likely temporary aggregations of multiple smaller objects, which result from the balance between fragmentation and accretion processes. One of these features was simultaneously observed by VIMS. There is evidence that this feature is elongated in azimuth. Some features show sharp edges. At least one F ring object is opaque and may be a “moonlet.” This possible moonlet provides evidence for larger objects embedded in Saturn's F ring, which were predicted as the sources of the F ring material by Cuzzi and Burns [Cuzzi, J.N., Burns, J.A., 1988. Icarus 74, 284-324], and as an outcome of tidally modified accretion by Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171]. We see too few events to confirm the bi-modal distribution which Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] predict. These F ring structures and other youthful features detected by Cassini may result from ongoing destruction of small parent bodies in the rings and subsequent aggregation of the fragments. If so, the temporary aggregates are 10 times more abundant than the solid objects. If recycling by re-accretion is significant, the rings could be quite ancient, and likely to persist far into the future.  相似文献   
113.
Chandra and XMM–Newton observations of the Cartwheel galaxy show ∼17 bright X-ray sources  (≳5 × 1038 erg s−1)  , all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting gas or undergoing mass transfer from a stellar companion. To this purpose, we run N -body/smoothed particle hydrodynamics simulations of the galaxy interaction which might have led to the formation of Cartwheel, tracking the dynamical evolution of two different IMBH populations: halo and disc IMBHs. Halo IMBHs cannot account for the observed X-ray sources, as only a few of them cross the outer ring. Instead, more than half of the disc IMBHs are pulled in the outer ring as a consequence of the galaxy collision. However, also in the case of disc IMBHs, accretion from surrounding gas clouds cannot account for the high luminosities of the observed sources. Finally, more than 500 disc IMBHs are required to produce ≲15 X-ray sources via mass transfer from very young stellar companions. Such number of IMBHs is very large and implies extreme assumptions. Thus, the hypothesis that all the observed X-ray sources in Cartwheel are associated with IMBHs is hardly consistent with our simulations, even if it is still possible that IMBHs account for the few (≲1–5) brightest ultraluminous X-ray sources.  相似文献   
114.
We simulate the collisional formation of a ring galaxy and we integrate its evolution up to 1.5 Gyr after the interaction. About 100–200 Myr after the collision, the simulated galaxy is very similar to observed ring galaxies (e.g. Cartwheel). After this stage, the ring keeps expanding and fades. Approximately 0.5–1 Gyr after the interaction, the disc becomes very large (∼100 kpc) and flat. Such extended discs have been observed only in giant low surface brightness galaxies (GLSBs). We compare various properties of our simulated galaxies (surface brightness profile, morphology, H  i spectrum and rotation curve) with the observations of four well-known GLSBs (UGC 6614, Malin 1, Malin 2 and NGC 7589). The simulations match quite well the observations, suggesting that ring galaxies could be the progenitors of GLSBs. This result is crucial for the cold dark matter (CDM) model, as it was very difficult, so far, to explain the formation of GLSBs within the CDM scenario.  相似文献   
115.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
116.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
117.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
118.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
119.
Recent research developed and experimentally validated a self‐centering buckling‐restrained brace (SC‐BRB) that employs a restoring mechanism created using concentric tubes held flush with pretensioned shape memory alloy rods, in conjunction with a buckling‐restrained brace (BRB) that dissipates seismic energy. The present computational study investigated how the SC‐BRB can be implemented in real buildings to improve seismic performance. First, a computational brace model was developed and calibrated against experimental data, including the definition of a new cyclic material model for superelastic NiTi shape memory alloy. A parametric study were then conducted to explore the design space for SC‐BRBs. Finally, a set of prototype buildings was designed and computationally subjected to a suite of ground motions. The effect of the lateral resistance of gravity framing on self‐centering was also examined. From the component study, the SC‐BRB was found to dissipate sufficient energy even with large self‐centering ratios (as large as 4) based on criteria found in the literature for limiting peak drifts. From the prototype building study, a SC‐BRB self‐centering ratio of 0.5 was capable of reliably limiting residual drifts to negligible values, which is consistent with a dynamic form of self‐centering discussed in the literature. Because large self‐centering ratios can create significant overstrength, the most efficient SC‐BRB frame designs had a self‐centering ratio in the range of 0.5–1.5. Ambient building resistance (e.g., gravity framing) was found to reduce peak drifts, but had a negligible effect on residual drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
Using a Markov chain model, we consider the regolith growth on a small body in orbit around Saturn, subject to meteoritic bombardment, and assuming all impact ejecta are re-collected. We calculate the growth of regolith and the fractional pollution, assuming an initial pure ice body and amorphous carbon as a pollutant. We extend the meteorite flux of Cuzzi and Estrada (Cuzzi, J., Estrada, P. [1998]. Icarus 132, 1-35) to larger sizes to consider the effect of disruption of the moonlet on other moonlets in the ensemble. This is a relatively small effect, completely negligible for moonlets of 1 m radius. For the given impact model, fractional pollution reaches 22% for 1 m bodies, but only 3% for 10 m bodies, 1.7% for 20 m bodies, and 1% for 30 m bodies after 4 byr. By considering an ensemble of moonlets, which have identical cross-sections for releasing and capturing ejecta, this analysis can be extended to a model of particles in Saturn’s rings, where the calculated spectra can be compared to observed ring spectra. The measured spectral reflectance of Saturn’s rings from Cassini observations therefore constrains the size and age of the ring particles. The comparison between 1 m, 10 m, 20 m, and 30 m particles confirms that for larger ring mass, the current rings would be less polluted; for the largest particles, we expect negligible changes in the UV spectrum after 4 byr of meteoritic bombardment. We consider two end members for mixing of the meteoritic material: areal and intimate. Given the uncertainties in the actual mixing of the meteoritic infall and in its composition (as a worst case, we assume the meteoritic material is 100% amorphous carbon, intimately mixed) initially pure ice 30 m ring particles would darken after 4 byr of exposure by 15%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号