首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3676篇
  免费   136篇
  国内免费   123篇
测绘学   80篇
大气科学   471篇
地球物理   935篇
地质学   1122篇
海洋学   749篇
天文学   342篇
综合类   61篇
自然地理   175篇
  2023年   12篇
  2022年   27篇
  2021年   52篇
  2020年   59篇
  2019年   70篇
  2018年   148篇
  2017年   146篇
  2016年   165篇
  2015年   111篇
  2014年   198篇
  2013年   252篇
  2012年   165篇
  2011年   241篇
  2010年   231篇
  2009年   219篇
  2008年   187篇
  2007年   199篇
  2006年   163篇
  2005年   137篇
  2004年   110篇
  2003年   109篇
  2002年   112篇
  2001年   81篇
  2000年   86篇
  1999年   61篇
  1998年   49篇
  1997年   44篇
  1996年   27篇
  1995年   38篇
  1994年   20篇
  1993年   19篇
  1992年   25篇
  1991年   22篇
  1990年   21篇
  1989年   15篇
  1988年   16篇
  1987年   24篇
  1986年   18篇
  1985年   15篇
  1984年   28篇
  1983年   33篇
  1982年   23篇
  1981年   19篇
  1980年   27篇
  1979年   13篇
  1978年   8篇
  1977年   19篇
  1975年   16篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3935条查询结果,搜索用时 140 毫秒
961.
962.
A specific benchmark has been developed by the French research group MoMas in order to improve numerical solution methods applied by reactive transport models, i.e., codes that couple hydrodynamic flow and mass transport in porous media with geochemical reactions. The HYTEC model has been applied to this benchmark exercise, and this paper summarizes some of the principal results. HYTEC is a general-purpose code, applied by industrials and research groups to a wide variety of domains, including soil pollution, nuclear waste storage, cement degradation, water purification systems, storage of CO2, and valorization of stabilized wastes. The code has been applied to the benchmark test-cases without any specific modification. Apart from the benchmark imposed output, additional information is provided to highlight the behavior of HYTEC specifically and the simulation results in particular.  相似文献   
963.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   
964.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   
965.
Kinmen Island is a small, tectonically stable, granitic island that has been suffering from a scarcity of fresh water resources due to excessive annual evapotranspiration over annual precipitation. Recent studies further indicate that shallow (0–70 m) sedimentary aquifers, the major sources of groundwater supply, have already been over-exploited. Therefore, this preliminary study is to investigate the existence of exploitable water resources that can balance the shortage of fresh water on this island. Site characterization data are obtained from island-wide geophysical surveys as well as small-scale tests performed in a study area formed by three deep (maximum depth to 560 m) vertical boreholes installed in mid-east Kinmen northeast to Taiwu Mountain. Vertical fracture frequency data indicate that the rock body is fractured with a spatially correlated pattern, from which three major fracture zones (depths 0–70, 330–360, and below 450 m) can be identified. Geologic investigations indicate that the deepest fracture zone is caused by the large-scale, steeply dipping Taiwushan fault. This fault may have caused a laterally extensive low-resistivity zone, a potential fractured aquifer, near Taiwu Mountain. The middle fracture zone is induced by the Taiwushan fault and intersects the fault approximately 21 m southeast of the study area below a depth of 350 m. Slug testing results yield fracture transmissivity varying from 4.8 × 10−7 to 2.2 × 10−4 m2/s. Cross-hole tests have confirmed that hydraulic connectivity of the deeper rock body is controlled by the Taiwushan fault and the middle fracture zone. This connectivity may extend vertically to the sedimentary aquifers through high-angle joint sets. Despite the presence of a flow barrier formed by doleritic dike at about 300 m depth, the existence of fresh as well as meteoric water in the deeper rock body manifests that certain flow paths must exist through which the deeper fractured aquifers can be connected to the upper rock body. Therefore, groundwater stored within the Taiwushan fault and the associated low-resistivity zone can be considered as additional fresh water resources for future exploitation.  相似文献   
966.
A numerical experiment was carried out to test whether the patchy CO2 emission patterns observed at the Zero Emissions Research and Technology release facility are caused by the presence of packers that divide the horizontal injection well into six CO2-injection zones. A three-dimensional model of the horizontal well and cobble–soil system was developed and simulations using TOUGH2/EOS7CA were carried out. Simulation results show patchy emissions for the seven-packer (six-injection-zone) configuration of the field test. Numerical experiments were then conducted for the cases of 24 packers (23 injection zones) and an effectively infinite number of packers. The time to surface breakthrough and the number of patches increased as the number of packers increased suggesting that packers and associated along-pipe flow are the origin of the patchy emissions. In addition, it was observed that early breakthrough occurs at locations where the horizontal well pipe is shallow and installed mostly in soil rather than the deeper cobble. In the cases where the pipe is installed at shallow depths and directly in the soil, higher pipe gas saturations occur than where the pipe is installed slightly deeper in the cobble. It is believed this is an effect mostly relevant to the model rather than the field system and arises through the influence of capillarity, permeability, and pipe elevation of the soil compared to the cobble adjacent to the pipe.  相似文献   
967.
Land subsidence is a serious problem in Taiwan’s Yunlin area due to groundwater overpumping. There are safety risks in the high-speed railway structures in the areas of Siluo, Huwei, Tuku, and Yuanchang towns that run from north to south in the Yunlin area. Therefore, it is important to increase the groundwater recharge and to remedy the land subsidence in this area. The purpose of this study is to use the stream-flow estimation model (SF) and the groundwater flow numerical software MODFLOW (MF) to estimate the stream infiltration with consideration to the variation of the river water level in the Hsinhuwei River. The Ferris analytical model (FA) and MF are used to estimate the increased stream infiltration after the water level of the river rises. The hydraulic parameters required for each model are obtained from field observations and laboratory experiments. The results indicate that the assessment of the stream infiltration obtained through the SF and MF models are 264.2 × 104 and 170.9 × 104 m3/year, respectively. When the river water level increases by about 2.5 m, the annual stream infiltration obtained through the FA and MF models significantly increases by 31.6 × 104 and 26.4 × 104 m3/year, respectively. Taken together, the stream storages estimated using these two models indicate that an increasing efficiency of groundwater recharge is within the range of 10.0–18.5%.  相似文献   
968.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   
969.
It is common to think of hot deserts, i.e. hot arid or dry lands, as areas of little rain situated in the middle parts of the world, that are simply 'just there'. However, most of the world's deserts have a long geological history, sometimes of 50 million years or more and ways have been developing for some time now, particularly from geomorphological studies, of not only erecting the law of superposition of strata for the desert but also 'absolute' dating. The authors have often worked commercially in deserts world-wide but their recent experiences in the Oman have brought home to them the excellent work that has been going on in the last two or three decades in evaluating the geological history of deserts. The Oman experience is described in a feature in the next issue.  相似文献   
970.
If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for γ-ray emission of pulsars is suggested. It is emphasized that: (1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4) The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the γ-ray emission from the annular flow are analogous to that pre-sented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号