首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26481篇
  免费   229篇
  国内免费   964篇
测绘学   1468篇
大气科学   2301篇
地球物理   4990篇
地质学   12080篇
海洋学   1532篇
天文学   1808篇
综合类   2183篇
自然地理   1312篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   37篇
  2020年   41篇
  2019年   48篇
  2018年   4808篇
  2017年   4081篇
  2016年   2708篇
  2015年   308篇
  2014年   228篇
  2013年   235篇
  2012年   1079篇
  2011年   2844篇
  2010年   2133篇
  2009年   2419篇
  2008年   2007篇
  2007年   2471篇
  2006年   159篇
  2005年   295篇
  2004年   504篇
  2003年   473篇
  2002年   300篇
  2001年   95篇
  2000年   84篇
  1999年   45篇
  1998年   44篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   23篇
  1980年   25篇
  1979年   2篇
  1976年   7篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2–1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.  相似文献   
122.
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   
123.
The coastal marine atmosphere adjacent to large urban and industrial centers is in general strongly impacted by pollution emissions, resulting in high loading of pollutants in the ambient air. Among the airborne substances are certain trace elements from a variety of emission sources that can serve as micronutrients to marine organisms in coastal waters. High concentrations of such elements in coastal air can result in enhanced air-to-sea deposition fluxes to coastal waters. They could also be transported over the open ocean, affecting the composition of the remote marine atmosphere and then ocean ecosystems. To provide better understanding of the extent of air-to-sea deposition processes on the New Jersey coast, a heavily polluted coastal region on the US East Coast, a synthesis of observation data was carried out for selected trace elements, including Fe, Cd, Cr and Cu, derived from measurements of both size-segregated and bulk aerosol particles, as well as precipitation around the New Jersey coast. The atmospheric input of Hg was also estimated based on measurement data. Results indicated that the total deposition fluxes of most trace elements were higher in Northern coastal NJ compared to Southern coastal NJ, reflecting the differences in the source strengths of these element emissions between the two coastal regions. Dry deposition processes were more significant for common dust-derived elements, particularly Fe and Al, compared with their wet deposition fluxes. However, the processes of precipitation scavenging appeared to be more important for the elements that were often enriched in fine particles including Zn, Cu, Pb and Ni. The removal of Hg from the ambient air was overwhelmingly dominated by atmospheric wet deposition. In the future, atmospheric measurements at more sites on the NJ coast should be performed simultaneously to reduce the spatial and temporal uncertainties associated with atmospheric deposition fluxes estimated in this study.  相似文献   
124.
Marine chemistry of the coastal environment starts with principles of rock weathering that use carbonic acid to mobilize elements, only some of which comprise the majority of sea salt. The principle reason is reverse weathering, extensively represented in coastal waters, and returns most elements to newly formed colloids or minerals while recycling carbon dioxide to the atmosphere. This includes the deeper ocean expanse of sediment diagenesis, plus hydrothermal plumes and attendant low-temperature basalt alteration. Within the estuarine and extended shelf regimes, both conservative and non-conservative processes can be distinguished and modeled to determine proportions of weathered elements transmitted to the sea or consumed by reverse weathering. Conceptually, the steady-state processes that lead to the composition of seawater can be viewed as heterogeneous equilibria between dissolved constituents and solid mineral products taking hundreds of millennia. However, initial processes in the estuarine and coastal environment are characterized by shorter term scavenging associated with inorganic and organic colloids. These recycle both carbon and trace elements on timescales commensurate with estuarine flushing and coastal exchange with the ocean. The natural uranium and thorium decay series provide powerful tools for quantifying the rates of estuarine processes, including those within groundwater and the subterranean estuary. In the future, new mass spectrometric and nuclear magnetic resonance techniques will help to define the molecular nature of newly formed estuarine colloids as has been done for dissolved organic matter. As the coastal environment undergoes the forces of climate change in the form of warming and sea level rise, future research should address how these will impact chemistry of the coastal environment as a net source or sink of carbon dioxide and associated organic material.  相似文献   
125.
Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.  相似文献   
126.
Anomalies found when apportioning responsibility for streamflow depletion are examined. The anomalies arise when responsibility is assigned to the two states that contribute to depletion of Beaver Creek in the Republican River Basin in the United States. The apportioning procedure for this basin presumes that the sum of streamflow depletions, computed by comparing simulation model runs with and without groundwater pumping from individual states, approximates the streamflow depletion when both states are pumping. In the case study presented here, this presumed superposition fails dramatically. The stream drying and aquifer-storage depletion, as represented in the simulation model used for allocation, are examined in detail to understand the hydrologic and numerical basis for the severe nonlinear response. Users of apportioning procedures that rely on superposition should be aware of the presence and likely magnitude of nonlinear responses in modeling tools.  相似文献   
127.
128.
An approach to establish the recharge component of managed aquifer recharge (MAR) has recently been proposed that uses small-diameter shallow wells installed using relatively inexpensive drilling methods such as direct push. As part of further development of that approach, a generalized procedure is presented for a technical and economic assessment of the approach’s potential in comparison to other systems. Following this procedure, the use of small-diameter wells was evaluated both experimentally and numerically for a site located in southern Styria, Austria. MAR is currently done at the site using a horizontal pipe infiltration system, and system expansion has been proposed with a target rate of 12 l/s using small-diameter wells as one possible option. A short-duration single-well field recharge experiment (recharge rate 1.3–3.5 l/s) was performed (recharge by gravity only). Numerical modeling of the injection test was used to estimate hydraulic conductivity (K). Quasi-steady-state, single-well recharge simulations for different locations, as well as a long-term transient simulation, were performed using the K value calibrated from the field injection test. Results indicate that a recharge capacity of 4.1 l/s was achievable with a maximum head rise of 0.2 m at the injection well. Finally, simulations were performed for three different well fields (4, 6 and 8 wells, respectively) designed to infiltrate a target rate of 12 l/s. The experimental and numerical assessments, supported by a cost analysis of the small-diameter wells, indicate that the small-diameter wells are a viable, cost-effective recharge approach at this and other similar sites.  相似文献   
129.
Geochemistry and environmental tracers were used to understand groundwater resources, recharge processes, and potential sources of contamination in the Rio Actopan Basin, Veracruz State, Mexico. Total dissolved solids are lower in wells and springs located in the basin uplands compared with those closer to the coast, likely associated with rock/water interaction. Geochemical results also indicate some saltwater intrusion near the coast and increased nitrate near urban centers. Stable isotopes show that precipitation is the source of recharge to the groundwater system. Interestingly, some high-elevation springs are more isotopically enriched than average annual precipitation at higher elevations, indicating preferential recharge during the drier but cooler winter months when evapotranspiration is reduced. In contrast, groundwater below 1,200 m elevation is more isotopically depleted than average precipitation, indicating recharge occurring at much higher elevation than the sampling site. Relatively cool recharge temperatures, derived from noble gas measurements at four sites (11–20 °C), also suggest higher elevation recharge. Environmental tracers indicate that groundwater residence time in the basin ranges from 12,000 years to modern. While this large range shows varying groundwater flowpaths and travel times, ages using different tracer methods (14C, 3H/3He, CFCs) were generally consistent. Comparing multiple tracers such as CFC-12 with CFC-113 indicates piston-flow to some discharge points, yet binary mixing of young and older groundwater at other points. In summary, groundwater within the Rio Actopan Basin watershed is relatively young (Holocene) and the majority of recharge occurs in the basin uplands and moves towards the coast.  相似文献   
130.
Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号