首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   6篇
  国内免费   8篇
测绘学   17篇
大气科学   49篇
地球物理   28篇
地质学   34篇
海洋学   2篇
天文学   36篇
综合类   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   11篇
  2016年   5篇
  2015年   4篇
  2014年   11篇
  2013年   5篇
  2012年   8篇
  2011年   7篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1995年   8篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
91.
Abstract

The characterization of earthquake sources in the Gulf of Alaska and the relative significance of earthquake sources for establishing seismic design inputs at a typical site for engineering purposes are discussed. Earthquake sources in the complex tectonic environment can be divided into two groups: (a) a subduction zone that underlies the entire region (maximum magnitude M = 8.5); and (b) individual thrust and strike‐slip faults associated with the plate motions (maximum magnitude M = 6 to 7.5). The sources of either group and individual earthquake events can be represented as planar surfaces for consistency with the physical process and a mathematically tractable computational scheme.

Although the area is very active seismically, the degree of activity of individual sources varies significantly. Therefore, even for sources with the same maximum earthquakes, different magnitudes may apply for a selected design return period. The area is considered to be a “seismic gap.”; No great earthquakes have occurred in nearly 80 years. Estimates based on a temporally varying seismic function such as the semi‐Markov model indicate that the probability of occurrence of a great earthquake in the near future is significantly higher than the average probability inferred from a statistical analysis of historical seismicity data of the entire region.

Separate attenuation relationships should be used for calculating ground motions due to earthquakes on the dipping subduction zone in the northern portion of the gulf. The dominant earthquake source for almost the entire Gulf of Alaska region is the subduction zone that contributes over 80 percent of the seismic exposure at a typical site. The dominant magnitude range is Ms = 6.5 to 7.5. “Gap filling”; earthquakes (Ms = 7.5 to 8.25) contribute a little over a third of the seismic exposure at a typical site. Deterministic assessments of ground motion values using the maximum earthquake on the subduction zone at the closest distance yield values significantly higher than those calculated for even 500‐year return periods. Estimated 100‐year return period accelerations in the area range from 180 to 340 cm/sec2.  相似文献   
92.
The Asteroid 21 Lutetia is the target of a flyby by the Rosetta spacecraft in mid-2010. We observed Lutetia with the Keck adaptive-optics system, and searched for satellites. We find none, to a flux limit of 1/350 (Δ-mag = 6.4), corresponding to a size limit of roughly 6 km, at a separation of 0.15″ (3 primary radii or 0.006 Hill radii).  相似文献   
93.
94.
95.
Canadian contributions to International Polar Year (IPY) 2007?C2008 were designed to improve the understanding of climate change impacts and adaptation and to gain insight into issues surrounding community health and well-being in Canada??s arctic. Fifty-two research projects, involving scientists, northern partners and communities, focused on the arctic atmosphere and climate, cryosphere, oceans, sea ice, marine ecosystems, terrestrial ecosystems, wildlife as well as human health and community well-being. Key research findings on these topics are presented in this special issue of Climatic Change. This introductory paper presents an overview of the international and Canadian IPY programs and a summary of Canadian IPY results, including progress made in data management and capacity building. The legacy of IPY in Canada includes expanded international scientific cooperation, meaningful partnerships with northern communities, and more northern residents with research training.  相似文献   
96.
Weakening of Indian summer monsoon rainfall in warming environment   总被引:1,自引:1,他引:0  
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   
97.
Preparation of a generalized chart of probable maximum precipitation (PMP) for the southern half of the Indian peninsula lying between lat. 8°N to 16°N has been attempted in this study. Maximum 1-day rainfall data of 70 to 80 years from 1891 for about 600 stations in the peninsular states of Tamil Nadu, Kerala, South Karnataka and southern portions of Andhra Pradesh were used. In order to get appropriate values of PMP, envelope frequency factor (K m) curve based on the actual rainfall data of the region was prepared. This study has shown that one-day PMP estimates over this region range from about 25 cm to about 85 cm. The heavy rainfall received over the coastal areas of Tamil Nadu in association with the cyclonic disturbance of November 1976 was examined and it was found that this rainfall was nowhere near the PMP estimates for this area.  相似文献   
98.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   
99.
Snow is highly reflective in the visible region of the electromagnetic spectrum making it possible to easily distinguish on a satellite image. However, cloud cover and mountain shadows pose a serious problem in the identification of snow in a mountainous region. Therefore, to identify snow in such an environment, a Normalized Difference Snow Index (NDSI) has been applied. The NDSI is based on the high reflectance of snow in the visible region and its low reflectance in the SWIR region, whereas, reflectance of cloud remains high compared to snow in the SWIR region. Efforts have been made to carry out field observations on reflectance of various land features near Manali in Himachal Pradesh (HP) to develop NDSI values for identifying snow. Field data have been collected using three field radiometers, viz., Multi-band Ground Truth Radiometer (GTR) operating in the 12 spectral bands ranging from visible to near-infrared wavelengths, Near-Infrared Ground Truth Radiometer (NIGTR) operating in the SWIR range, and Ratio-Radiometer (RR) operating in two spectral bands, one in the visible range, and another band in the SWIR range. All these three field radiometers have been designed and developed indigenously at the Space Applications Centre (ISRO), Ahmedabad. NDSI values for all types of snow, such as, fresh, clear, patchy and wet, have been found to be in the range 0.9 to 0.96. In addition, the NDSI value for snow under mountain shadow is found to be more than 0.9. This suggests the use of NDSI method for snow cover monitoring under mountain shadow. NDSI values for other land features such as soil, vegetation, and rock were substantially different than snow. However, water bodies have NDSI values close to snow and they need to be masked during snow cover delineation using NIR band.  相似文献   
100.
An attempt has been made to study variations in the glacier extent over a period of time using digital elevation model (DEM) and orthoimages derived from IRS-1C PAN stereo pairs of 1997–98 and topographical map surveyed during 1962–63. DEM and orthoimages have been generated using integrated software developed for processing of IRSIC/ID panchromatic stereo data using the softcopy photogrammetric workstation. Case studies of two glaciers, i.e. the Janapa garang and Shaune garang glaciers of the Basapa basin, a sub-basin of Satluj River in India, have been presented here. Generation of DEM has been followed by the estimation of its accuracy. PAN images were interpreted for identification of the snout of the glaciers. The geographical locations of the snouts on the images were compared with the location as mapped on the topographical map of the study area. To verify satellite observations, field investigations were carried out at Shaune garang glacier area. The Janapa garang and the Shaune garang are observed to have retreat of 596m and 923 m respectively. Reduction in the thickness of ice in the deglaciated part of the Shaune garang glacier was estimated on the basis of change in the elevations of the glacial surface from 1963 to 1998.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号