首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   1篇
  国内免费   3篇
测绘学   10篇
大气科学   30篇
地球物理   15篇
地质学   20篇
海洋学   10篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1963年   1篇
  1956年   1篇
排序方式: 共有91条查询结果,搜索用时 0 毫秒
31.
Neotectonic activity in Mahe (Mayyazhi) river basin and its implication in landform development and stream characteristics were investigated with the help of the digital elevation model-derived geomorphic indices. The analysis is based on the commonly used geomorphic indices such as hypsometric curve and integral, drainage basin asymmetry, transverse topographic symmetric factor (T), stream length (SL) gradient index and longitudinal profiles of the stream. Hypsometric integrals indicate that the basin has reached the base level and lesser amount of material remains for erosion and transportation. The basin is asymmetric and has a south-south-east directional tilt, but with a probable spin caused due to the presence of major strike slip fracture, the mouth portion of the Mahe river has been tilted towards north-north-west. The SL index with sudden and non-uniform variations supports the finding and indicates the relative tectonic activity and its influence over the river networks in the area. Longitudinal profile of the stream also reveals gradational changes in the profile with the presence of knick points. Cross comparison of the analysed geomorphic indices points towards neotectonic activity in the basin, which modified the river basin to the present morphology and is reflected in the characteristics of the river and the basin as a whole.  相似文献   
32.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
33.
The Tsunami of December 26, 2004, in the Indian Ocean arrived on the coast of Kerala in southwest India some three hours after the tsunami was generated. The tsunami activity persisted throughout that day and, in some locations, even into the early morning of the next day. Based on interviews with eye witnesses, arrival times of tsunami waves are presented here followed by some preliminary analysis of the results.  相似文献   
34.
We studied five strains of psychrotolerant Bacillus cereus (B. cereus) isolated from Antarctic snow (BCsn), ice (BCic), lake water (BCwt), sediment (BCsd), and soil (BCsl) samples in terms of their growth, biochemical properties, and heat shock re- sponses. Analyses of growth kinetics at 4℃ showed that BCsn had the fastest generation time (16.1 h), whereas BCWT had the slowest (30.8 h). Strain BCsd formed the largest zone of lipid hydrolysis (18 mm) whereas BCsn formed the smallest zone (3 mm).Only BCsd produced gelatinase. These physiological differences illustrate adaptations of B. cereus isolates to different niches. Strains BCsl and BCwr were resistant to all 12 of the antibiotics tested. Strains BCsn, BCio, and BCsd were resistant to cell wall synthesis inhibitors (penicillin and ampicillin) and susceptible to protein synthesis inhibitors (tetracycline and streptomycin). A carbon-substrate utilization assay revealed that BCsn, BCic and BCwr could specifically utilize D-glucose-6-phosphate, salicin, and 2'-deoxyadenosine, respectively, indicating a degree of metabolic diversity among these Antarctic B. cereus strains. An analy- sis of heat shock proteins (HSPs) produced in response to a 60℃ heat treatment revealed significant variations in the amounts of HSP33 (p = 0.01, df= 4), HSP44 (p = 0.003, dr= 4), and HSP60 (p = 0.04, df= 4) among the strains. This emphasizes the impor- tance of HSPs in bacterial taxonomy. These results show that there are considerable adaptive variations among B. cereus strains from extremophilie environments. This could be significant in evaluating the taxonomy and evolution of this species.  相似文献   
35.
This paper examines the difference in the geophysical and chemical characteristic of the volcanic ash and thermal fly ash to evaluate environmental pollution. Natural volcanic ash (VA) samples from Sagirelu, Cuddapah dist., Andhra Pradesh and thermal fly ash (FA) samples from the Thermal Power Station, Ennore, Chennai, were collected, analysed and compared. The particle sizes of the ash samples were determined using the laser particle size analyzer and the different surface morphological characters were studied using SEM analyses. The chemical components such as pH, major oxides, trace metals and mineral compositions were determined using pH metre, XRF and XRD methods. pH value of the volcanic ash varies from 8.5 to 8.9 indicating its alkalinity (8.5 to 9) in volcanic ash, while the thermal ash is neutral to mildly alkaline with pH varying from 6 to 7.5. Both the ash samples have higher concentration value in SiO2 (VA - 69.25%, FA - 46%) in major oxides and Cl (VA - 0.8%, FA - 0.1%) in trace elements. Quartz is the dominant mineral in both the types of ash, however, the volcanic ash has amorphous silica, while the fly ash contains crystalline quartz.  相似文献   
36.
37.
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16°N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to ??upper tropospheric warming effect?? predominates over the ??moisture build-up effect?? in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.  相似文献   
38.
Sandeep  N.  Swapna  P.  Krishnan  R.  Farneti  R.  Prajeesh  A. G.  Ayantika  D. C.  Manmeet  S. 《Climate Dynamics》2020,54(7):3507-3524
Climate Dynamics - Observational records and climate model projections reveal a considerable decline in the Atlantic Meridional Overturning Circulation (AMOC). Changes in the AMOC can have a...  相似文献   
39.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L−1, cadmium 3.1±0.3μg L−1, zinc 8.4±2.6μg L−1 and copper 0.3±0.1μg L−1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.  相似文献   
40.
Abstract

A relatively simple process-oriented, physically-based distributed (PBD) hydrological model, the distributed runoff and erosion assessment model (DREAM), is described, and a validation study conducted in the semi-forested watershed of Pathri Rao, in the Garhwal Himalayas, India, is reported. DREAM takes account of watershed heterogeneity as reflected by land use, soil type, topography and rainfall, measured in the field or estimated through remote sensing, and generates estimates of runoff and sediment yield in spatial and temporal domains. The model is based on simultaneous solution of flow dynamics, based on kinematic wave theory, followed by solution of soil erosion dynamics. As the storm rainfall proceeds, the process of overland flow generation is dependent on the interception storage and infiltration rates. The components of the soil erosion model have been modified to provide better prediction of sediment flow rates and sediment yields. The validation study conducted to test the performance of the model in simulating soil erosion and sediment yield during different storm events monitored in the study watershed showed that the model outputs are satisfactory. Details of a sensitivity analysis, model calibration and the statistical evaluation of the results obtained are also presented and discussed. It is noteworthy that the distributed nature of the model combined with the use of geographical information system (GIS) techniques permits the computation and representation of the spatial distribution of sediment yield for simulated storm events, and a map of the spatial distribution of sediment yield for a simulated storm event is presented to highlight this capability.

Citation Ramsankaran, R., Kothyari, U.C., Ghosh, S.K., Malcherek, A., and Murugesan, K., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号