首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   33篇
  国内免费   21篇
测绘学   20篇
大气科学   148篇
地球物理   239篇
地质学   500篇
海洋学   36篇
天文学   293篇
综合类   4篇
自然地理   30篇
  2021年   18篇
  2020年   19篇
  2019年   14篇
  2018年   16篇
  2017年   14篇
  2016年   27篇
  2015年   30篇
  2014年   34篇
  2013年   51篇
  2012年   44篇
  2011年   50篇
  2010年   40篇
  2009年   52篇
  2008年   53篇
  2007年   36篇
  2006年   39篇
  2005年   39篇
  2004年   40篇
  2003年   29篇
  2002年   35篇
  2001年   22篇
  2000年   24篇
  1999年   24篇
  1998年   18篇
  1997年   10篇
  1996年   15篇
  1995年   17篇
  1994年   19篇
  1993年   15篇
  1992年   12篇
  1991年   19篇
  1990年   12篇
  1989年   12篇
  1988年   14篇
  1987年   19篇
  1986年   14篇
  1985年   13篇
  1984年   20篇
  1983年   21篇
  1981年   25篇
  1980年   18篇
  1979年   17篇
  1978年   22篇
  1977年   12篇
  1976年   20篇
  1975年   13篇
  1974年   9篇
  1973年   19篇
  1971年   8篇
  1970年   9篇
排序方式: 共有1270条查询结果,搜索用时 0 毫秒
61.
62.
63.
The effect of dissolved barium on biogeochemical processes at cold seeps   总被引:2,自引:0,他引:2  
A numerical model was applied to investigate and quantify the biogeochemical processes fueled by the expulsion of barium and methane-rich fluids in the sediments of a giant cold-seep area in the Derugin Basin (Sea of Okhotsk). Geochemical profiles of dissolved Ba2+, Sr2+, Ca2+, SO42−, HS, DIC, I and of calcium carbonate (CaCO3) were fitted numerically to constrain the transport processes and the kinetics of biogeochemical reactions. The model results indicate that the anaerobic oxidation of methane (AOM) is the major process proceeding at a depth-integrated rate of 4.9 μmol cm−2 a−1, followed by calcium carbonate and strontian barite precipitation/dissolution processes having a total depth-integrated rate of 2.1 μmol cm−2 a−1. At the low seepage rate prevailing at our study site (0.14 cm a−1) all of the rising barium is consumed by precipitation of barite in the sedimentary column and no benthic barium flux is produced. Numerical experiments were run to investigate the response of this diagenetic environment to variations of hydrological and biogeochemical conditions. Our results show that relatively low rates of fluid flow (<∼5 cm a−1) promote the dispersed precipitation of up to 26 wt% of barite and calcium carbonate throughout the uppermost few meters of the sedimentary column. Distinct and persistent events (several hundreds of years long) of more vigorous fluid flow (from 20-110 cm a−1), instead, result in the formation of barite-carbonate crusts near the sediment surface. Competition between barium and methane for sulfate controls the mineralogy of these sediment precipitates such that at low dissolved methane/barium ratios (<4-11) barite precipitation dominates, while at higher methane/barium ratios sulfate availability is limited by AOM and calcium carbonate prevails. When seepage rates exceed 110 cm a−1, barite precipitation occurs at the seafloor and is so rapid that barite chimneys form in the water column. In the Derugin Basin, spectacular barite constructions up to 20 m high, which cover an area of roughly 22 km2 and contain in excess of 5 million tons of barite, are built through this process. In these conditions, our model calculates a flux of barium to the water column of at least 20 μmol cm−2 a−1. We estimate that a minimum of 0.44 × 106 mol a−1 are added to the bottom waters of the Derugin Basin by cold seep processes, likely affecting the barium cycle in the Sea of Okhotsk.  相似文献   
64.
65.
66.
67.
Vitreous materials are quite routinely found in natural settings. Most of them are aluminosilicates, which often occur in large deposits. Considering the geological formations in which naturally occurring vitreous aluminosilicates are found, they have generally remained stable for more than 1 Ma on the earth's surface, even in different geological and climatic environments. These non-crystalline solids played a very important role in the development of ancient human civilizations, long before the introduction of metallic tools. Today, however, the properties of natural glasses are of interest to mankind for completely different reasons. For example, industrial glasses are used today for encapsulating toxic wastes, especially radioactive waste, which remains active for centuries or more, in order to prevent the unwanted transfer of harmful materials to the environment. The chemical compositions of industrially produced glasses are in large part different from the compositions of natural glasses. Little is quantitatively known about the stability of industrial glasses over very long periods of time (>10,000 years). However, the physical and chemical stability of natural aluminosilicate glasses is known to extend over very long periods of time.The advancement of technological design to prevent or at least minimize the melt down of toxic waste during the encapsulation process is currently a major challenge, using glasses of natural chemical composition. Brecciated glass, which is found frequently in natural settings, provides a special clue to the possibility of producing vitreous solids by sintering glass fragments without melting the cullets. It is essential to prevent melting of the cullets because the melt has the potential of chemically reacting with the toxic waste.This paper summarizes the geological, chemical, and physical facts concerning naturally produced glasses, and seeks to establish a recognized database for further research in the domain of understanding the glass-forming processes that occur in nature. Furthermore, the authors hope to stimulate research into the utilization of natural resources that to solve the problem of storing of toxic waste safely.Major and trace element data have been collected over the past 100 years. These data constitute a sufficient basis for the chemical characterization of natural glasses. More information about the major elements is not required, in order to understand the chemical properties of these materials. On the other hand, large gaps in compositional data exist where other related components are concerned: e.g., in the case of “water-species”, with its different forms of bonding in silicates or oxygen (oxygen fugacity), CO2-, sulphur - or hydrocarbons (methane)-, hydrogen-, chlorine-and fluorine-species. All these components have a significant impact on the properties of glasses, even when present only in minor quantities. Glass textures and crystal morphologies reflect the processes of nucleation and crystal growth in a glass-forming matrix during the cooling and reheating cycles which are currently not thoroughly understood. In nature, the processes that led to the formation of vitreous materials are very different from those used in the production of industrial glasses. The different genetic conditions under which glass formation occurs permit differentiation between magmatic and metamorphic vitreous solids. Sedimentary and biogenetic processes also contribute to the formation of non-crystalline solids.  相似文献   
68.
69.
On February 13, 1981 a relatively strong earthquake occurred in the Lake Vänern region in south-central Sweden. The shock had a magnitude ofML = 3.3 and was followed within three weeks by three aftershocks, with magnitudes 0.5 ≤ ML ≤ 1.0. The focal mechanism solution of the main shock indicates reverse faulting with a strike in the N-S or NE-SW direction and a nearly horizontal compressional stress. The aftershocks were too small to yield data for a full mechanism solution, but first motions of P-waves, recorded at two stations, are consistent for the aftershocks. Dynamic source parameters, derived from Pg- and Sg-wave spectra, show similar stress drops for the main shock (2 bar) and the aftershocks (1 bar), while the differences in seismic moment (1.5·1020 resp. 4·1018dyne cm), fault length (0.7 resp. 0.2 km) and relative displacement (0.15 resp. 0.03 cm) are significant.  相似文献   
70.
We report U–Pb single zircon ages from three pre-Variscan granitoids in the NE part of the Bohemian Massif. The Platerówka granodiorite from the Lausitz-Izera Unit, the Polish Sudetes, has been dated at 533±9 Ma. The Bitouchov granite form the SW part of the South Krkonoe Unit, the Czech Sudetes, gave an age of 540+11/–10 Ma, and the Wdroe granodiorite in the Fore-Sudetic Block yielded 548±9 Ma. All these latest Vendian/Early Cambrian granitoids represent the post-tectonic expression of a late Proterozoic Cadomian orogenic cycle and demonstrate the eastward extent of the Cadomian basement into the Variscan orogen. Granodiorites of similar age have so far been reported from Brittany and especially from the Saxo-Thuringian Terrane to the NE and SW of the Elbe Fault Zone. We conclude that the Saxo-Thuringian Terrane extends across the Elbe and Sudetic Marginal Fault Zones into the Fore-Sudetic Block.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号