首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2076篇
  免费   59篇
  国内免费   24篇
测绘学   42篇
大气科学   204篇
地球物理   523篇
地质学   633篇
海洋学   200篇
天文学   308篇
综合类   12篇
自然地理   237篇
  2023年   12篇
  2022年   12篇
  2021年   22篇
  2020年   34篇
  2019年   39篇
  2018年   57篇
  2017年   63篇
  2016年   54篇
  2015年   53篇
  2014年   68篇
  2013年   112篇
  2012年   76篇
  2011年   114篇
  2010年   89篇
  2009年   111篇
  2008年   108篇
  2007年   96篇
  2006年   90篇
  2005年   71篇
  2004年   67篇
  2003年   58篇
  2002年   58篇
  2001年   38篇
  2000年   42篇
  1999年   31篇
  1998年   34篇
  1997年   35篇
  1996年   26篇
  1995年   33篇
  1994年   20篇
  1993年   28篇
  1992年   18篇
  1991年   14篇
  1990年   21篇
  1989年   14篇
  1988年   16篇
  1987年   19篇
  1986年   22篇
  1985年   26篇
  1984年   23篇
  1983年   32篇
  1982年   23篇
  1981年   13篇
  1980年   22篇
  1979年   19篇
  1978年   25篇
  1977年   14篇
  1976年   21篇
  1974年   12篇
  1973年   13篇
排序方式: 共有2159条查询结果,搜索用时 15 毫秒
101.
102.
During impact events, zircons develop a wide range of shock metamorphic features that depend on the pressure and temperature conditions experienced by the zircon. These conditions vary with original distance from impact center and whether the zircon grains are incorporated into ejecta or remain within the target crust. We have employed the range of shock metamorphic features preserved in >4 Ga lunar zircons separated from Apollo 14 and 15 breccias and soils in order to gain insights into the impact shock histories of these areas of the Moon. We report microstructural characteristics of 31 zircons analyzed using electron beam methods including electron backscatter pattern (EBSP) and diffraction (EBSD). The major results of this survey are as follows. (1) The abundance of curviplanar features hosting secondary impact melt inclusions suggests that most of the zircons have experienced shock pressures between 3 and 20 GPa; (2) the scarcity of recrystallization or decomposition textures and the absence of the high‐pressure polymorph, reidite, suggests that few grains have been shocked to over 40 GPa or heated above 1000 °C in ejecta settings; (3) one grain exhibits narrow, arc‐shaped bands of twinned zircon, which map out as spherical shells, and represent a novel shock microstructure. Overall, most of the Apollo 14 and 15 zircons exhibit shock features similar to those of terrestrial zircon grains originating from continental crust below large (~200 km) impact craters (e.g., Vredefort impact basin), suggesting derivation from central uplifts or uplifted rims of large basins or craters on the Moon and not high‐temperature and ‐pressure ejecta deposits.  相似文献   
103.
104.
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based δ18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36.9±3.3 ka at 0.45 m below sea floor and correlate suspected glacial–interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The δ18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early–mid-Pleistocene (0.9–1.38 Ma). An increase in δ18O values after 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The δ18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial–interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16–21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs.  相似文献   
105.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   
106.
We present the Extended Hipparcos Compilation (XHIP), a database of all stars in the New Reduction of the Hipparcos Catalog extensively cross-referenced with data from a broad survey of presently available sources. The resulting collection uniquely assigns 116 096 spectral classifications, 46 392 radial velocities, and 18 549 homogenized iron abundances [Fe/H] to Hipparcos stars. Stellar classifications from SIMBAD, indications of multiplicity from CCDM or WDS, stellar ages from the Geneva-Copenhagen Survey III, supplemental photometry from 2MASS and SIMBAD, and identifications of exoplanet host stars are also included. Parameters for solar encounters and Galactic orbits are calculated for a kinematically complete subset. Kinetic bias is found to be minimal. Our compilation is available through the Centre de Données astronomiques de Strasbourg as Catalog V/137A.  相似文献   
107.
It has recently been shown by Rauch 38 Tremaine that the rate of angular momentum relaxation in nearly Keplerian star clusters is greatly increased by a process termed 'resonant relaxation'; it was also argued, via a series of scaling arguments, that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch 38 Tremaine. The simulation method is based on an N -body routine incorporating cloning of stars near the loss cone and a semirelativistic symplectic integration scheme. Normalized disruption rates for resonant and non-resonant nuclei are derived at orbital energies both above and below the critical energy, and the corresponding angular momentum distribution functions are found. The black hole mass above which resonant tidal disruption is quenched by relativistic precession is determined. We also briefly describe the discovery of chaos in the Wisdom–Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M  >  M Q  = (8 ± 3) × 107  M . The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.  相似文献   
108.
Abstract— Two assumptions commonly employed in meteorite interpretation are that fusion crust compositions represent the bulk‐rock chemistry of the interior meteorite and that the vesicles within the fusion crust result from the release of implanted solar wind volatiles. Electron microprobe analyses of thin sections from lunar meteorite Miller Range (MIL) 05035 and eucrite Bates Nunataks (BTN) 00300 were performed to determine if the chemical compositions of the fusion crust varied and/or represented the published bulk rock composition. It was determined that fusion crust compositions are significantly influenced by the incorporation of fragments from the substrate, and by the composition and grain size of those minerals. Because of compositional heterogeneities throughout the meteorite, one cannot assume that fusion crust composition represents the bulk rock composition. If the compositional variability within the fusion crust and mineralogical differences among thin sections goes unnoticed, then the perceived composition and petrogenetic models of formation will be incorrect. The formation of vesicles within these fusion crusts were also compared to current theories attributing vesicles to a solar wind origin. Previous work from the STONE‐5 experiment, where terrestrial rocks were exposed on the exterior of a spacecraft heatshield, produced a vesicular fusion crust without prolonged exposure to solar wind suggesting that the high temperatures experienced by a meteorite during passage through the Earth's atmosphere are sufficient to cause boiling of the melt. Therefore, the assumption that all vesicles found within a fusion crust are due to the release of implanted volatiles of solar wind may not be justified.  相似文献   
109.
110.
A large amount of interest has recently been expressed pertaining to the quantity of physically adsorbed water by the Martian regolith. Thermodynamic calculations based on experimentally determined adsorption and desorption isotherms and extrapolated to subzero temperatures indicate that physical adsorption of more than one or two monomolecular layers is highly unlikely under Martian conditions. Any additional water would find ice to be the state of lowest energy and therefore the most stable form. To test the validity of the thermodynamic calculations we have measured adsorption and desorption isotherms of sodium montmorillonite at ?5°C. To a first approximation it was found to be valid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号