首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   38篇
  国内免费   2篇
测绘学   10篇
大气科学   82篇
地球物理   199篇
地质学   244篇
海洋学   55篇
天文学   102篇
综合类   2篇
自然地理   95篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   14篇
  2019年   18篇
  2018年   12篇
  2017年   26篇
  2016年   46篇
  2015年   30篇
  2014年   25篇
  2013年   77篇
  2012年   22篇
  2011年   34篇
  2010年   32篇
  2009年   27篇
  2008年   30篇
  2007年   29篇
  2006年   15篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   27篇
  2001年   11篇
  2000年   9篇
  1999年   9篇
  1998年   14篇
  1997年   15篇
  1996年   11篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   9篇
  1991年   10篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   7篇
  1980年   16篇
  1979年   10篇
  1978年   12篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1973年   7篇
排序方式: 共有789条查询结果,搜索用时 15 毫秒
101.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   
102.
Clays and clay‐bearing rocks like shale are extremely water sensitive. This is partly due to the interaction between water and mineral surfaces, strengthened by the presence of nanometer‐size pores and related large specific surface areas. Molecular‐scale numerical simulations, using a discrete‐element model, show that shear rigidity can be associated with structurally ordered (bound or adsorbed) water near charged surfaces. Building on these and other molecular dynamics simulations plus nanoscale experiments from the literature, the water monolayer adjacent to hydrophilic solid surfaces appears to be characterised by shear stiffness and/or enhanced viscosity. In both cases, elastic wave propagation will be affected by the bound or adsorbed water. Using a simple rock physics model, bound water properties were adjusted to match laboratory measured P‐ and S‐wave velocities on pure water‐saturated kaolinite and smectite. To fit the measured stress sensitivity, particularly for kaolinite, the contribution from solid‐grain contact stiffness needs to be added. The model predicts, particularly for S‐waves, that viscoelastic bound water could be a source of dispersion in clay and clay‐rich rocks. The bound‐water‐based rock physics model is found to represent a lower bound to laboratory‐measured velocities obtained with shales of different mineralogy and porosity levels.  相似文献   
103.
104.
A direct finite element (FE) method for nonlinear response history analysis of semi-unbounded dam-water-foundation systems has recently been presented. The analysis procedure employs standard viscous-damper absorbing boundaries to model the semi-unbounded foundation and fluid domains and specifies the seismic input as effective earthquake forces—determined from a control motion defined at the foundation surface—at these boundaries. Presented in this paper are several simplifications to this direct FE method that greatly facilitates its implementation in commercial FE software. Also addressed is the modeling of the principal nonlinear mechanisms for concrete dams, calibration of damping in the numerical model to ensure consistency with values measured at actual dams, and practical procedures for implementation of the direct FE method with a commercial FE program.  相似文献   
105.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir.  相似文献   
106.
The uncertainties related to long-term forecasts of oil prices impose significant financial risk on ventures of oil production. To minimize risk, oil companies are inclined to maximize profit over short-term horizons ranging from months to a few years. In contrast, conventional production optimization maximizes long-term profits over horizons that span more than a decade. To address this challenge, the oil literature has introduced short-term versus long-term optimization. Ideally, this problem is solved by a posteriori multi-objective optimization methods that generate an approximation to the Pareto front of optimal short-term and long-term trade-offs. However, such methods rely on a large number of reservoir simulations and scale poorly with the number of objectives subject to optimization. Consequently, the large-scale nature of production optimization severely limits applications to real-life scenarios. More practical alternatives include ad hoc hierarchical switching schemes. As a drawback, such methods lack robustness due to unclear convergence properties and do not naturally generalize to cases of more than two objectives. Also, as this paper shows, the hierarchical formulation may skew the balance between the objectives, leaving an unfulfilled potential to increase profits. To promote efficient and reliable short-term versus long-term optimization, this paper introduces a natural way to characterize desirable Pareto points and proposes a novel least squares (LS) method. Unlike hierarchical approaches, the method is guaranteed to converge to a Pareto optimal point. Also, the LS method is designed to properly balance multiple objectives, independently of Pareto front’s shape. As such, the method poses a practical alternative to a posteriori methods in situations where the frontier is intractable to generate.  相似文献   
107.
For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.  相似文献   
108.
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.  相似文献   
109.
The seasonal variation in phytoplankton activity is determined by analysing 1385 primary production (PP) profiles, chlorophyll a (Chl) concentration profiles and phytoplankton carbon biomass concentrations (C) from the period 1998–2012. The data was collected at six different stations in the Baltic Sea transition zone (BSTZ) which is a location with strong seasonal production patterns with light as the key parameter controlling this productivity. We show that the use of Chl as a proxy for phytoplankton activity strongly overestimates the contribution from the spring production to annual pelagic carbon flow. Spring (February and March) Chl comprised 16–30% of the total annual Chl produced, whereas spring C was much lower (8–23%) compared to the annual C. Spring PP accounted for 10–18% of the total annual PP, while the July–August production contributed 26–33%, i.e. within the time frame when zooplankton biomass and grazing pressure are highest. That is, Chl failed in this study to reflect the importance of the high summer PP. A better proxy for biomass may be C, which correlated well with the seasonal pattern of PP (Pearson correlation, p < 0.05). Thus, this study suggests to account for the strong seasonal pattern in C/Chl ratios when considering carbon flow in coastal systems. Seasonal data for PP were fitted to a simple sinusoidal wave model describing the seasonal distribution of PP in the BSTZ and were proposed to present a better parameterizaton of PP in shallow stratified temperate regions than more commonly applied proxies.  相似文献   
110.
The northward flow of warm and saline Atlantic Water through the eastern Nordic Seas sustains a spring-bloom ecosystem that hosts some of the world’s largest commercial fish stocks. Abrupt climatic changes, or changes beyond species-specific thresholds, may have severe effects on species abundance and distribution. Here, we utilize a numerical ocean model hindcast to explore the similarities and differences between large-scale anomalies, such as great salinity anomalies, and along-shelf hydrographic anomalies of regional origin, which represent abrupt changes at subannual time scales. The large-scale anomalies enter the Nordic Seas to the south and propagate northward at a speed one order of magnitude less than the Atlantic Water current speed. On the contrary, wind-generated along-shelf anomalies appear simultaneously along the Norwegian continental shelf and propagate northward at speeds associated with topographically trapped Kelvin waves. This process involves changes in the vertical extent of the Atlantic Water along the continental slope. Such a dynamic oceanic response both affects thermal habitats and has the potential to ventilate shelf waters by modifying the cross-shelf transport of nutrients and key prey items for early stages of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号