首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   5篇
  国内免费   2篇
大气科学   3篇
地球物理   40篇
地质学   31篇
海洋学   17篇
天文学   10篇
综合类   1篇
自然地理   45篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2008年   15篇
  2007年   4篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1974年   2篇
  1973年   5篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1912年   1篇
  1908年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
61.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
Marsh soil properties vary drastically across estuarine salinity gradients, which can affect soil strength and, consequently, marsh edge erodibility. Here, we quantify how marsh erosion differs between saline and brackish marshes of the Mississippi Delta. We analyzed long-term (1932–2015) maps of marsh loss and developed an algorithm to distinguish edge erosion from interior loss. We found that the edge erosion rate remains nearly constant at decadal timescales, whereas interior loss varies by more than 100%. On average, roughly half of marsh loss can be attributed to edge erosion, the other half to interior loss. Based on data from 42 cores, brackish marsh soils had a lower bulk density (0.17 vs. 0.27 g/cm3), a higher organic content (43% vs. 26%), a lower shear strength (2.0 vs. 2.5 kPa), and a lower shear strength in the root layer (13.8 vs. 20.7 kPa) than saline marsh soils. We then modified an existing marsh edge erosion model by including a salinity-dependent erodibility. By calibrating the erodibility with the observed retreat rates, we found that the brackish marsh is two to three times more erodible than the saline marshes. Overall, this model advances the ability to simulate estuarine systems as a whole, thus transcending the salinity boundaries often used in compartmentalized marsh models.  相似文献   
63.
The hydrocarbon industry is moving increasingly towards tight sandstone and shale gas resources – reservoirs that require fractures to be produced economically. Therefore, techniques that can identify sets of aligned fractures are becoming more important. Fracture identification is also important in the areas of coal bed methane production, carbon capture and storage (CCS), geothermal energy, nuclear waste storage and mining. In all these settings, stress and pore pressure changes induced by engineering activity can generate or reactivate faults and fractures. P‐ and S‐waves are emitted by such microseismic events, which can be recorded on downhole geophones. The presence of aligned fracture sets generates seismic anisotropy, which can be identified by measuring the splitting of the S‐waves emitted by microseismic events. The raypaths of the S‐waves will have an arbitrary orientation, controlled by the event and geophone locations, meaning that the anisotropy system may only be partly illuminated by the available arrivals. Therefore to reliably interpret such splitting measurements it is necessary to construct models that compare splitting observations with modelled values, allowing the best fitting rock physics parameters to be determined. Commonly, splitting measurements are inverted for one fracture set and rock fabrics with a vertical axis of symmetry. In this paper we address the challenge of identifying multiple aligned fracture sets using splitting measured on microseismic events. We analyse data from the Weyburn CCS‐EOR reservoir, which is known to have multiple fracture sets, and from a hydraulic fracture stimulation, where it is believed that only one set is present. We make splitting measurements on microseismic data recorded on downhole geophone arrays. Our inversion technique successfully discriminates between the single and multiple fracture cases and in all cases accurately identifies the strikes of fracture sets previously imaged using independent methods (borehole image logs, core samples, microseismic event locations). We also generate a synthetic example to highlight the pitfalls that can be encountered if it is assumed that only one fracture set is present when splitting data are interpreted, when in fact more than one fracture set is contributing to the anisotropy.  相似文献   
64.
Changes in climate may significantly affect how sediment moves through watersheds into harbours and channels that are dredged for navigation or flood control. Here, we applied a hydrologic model driven by a large suite of climate change scenarios to simulate both historical and future sediment yield and transport in two large, adjacent watersheds in the Great Lakes region. Using historical dredging expenditure data from the U.S. Army Corps of Engineers, we then developed a pair of statistical models that link sediment discharge from each river to dredging costs at the watershed outlet. Although both watersheds show similar slight decreases in streamflow and sediment yield in the near‐term, by Mid‐Century, they diverge substantially. Dredging costs are projected to change in opposite directions for the two watersheds; we estimate that future dredging costs will decline in the St. Joseph River by 8–16% by Mid‐Century but increase by 1–6% in the Maumee River. Our results show that the impacts of climate change on sediment yield and dredging may vary significantly by watershed even within a region and that agricultural practices will play a large role in determining future streamflow and sediment loads. We also show that there are large variations in responses across climate projections that cause significant uncertainty in sediment and dredging projections.  相似文献   
65.
A large imbalance between recharge and water withdrawal has caused vital regions of the High Plains Aquifer (HPA) to experience significant declines in storage. A new predevelopment map coupled with a synthesis of annual water levels demonstrates that aquifer storage has declined by approximately 410 km3 since the 1930s, a 15% larger decline than previous estimates. If current rates of decline continue, much of the Southern High Plains and parts of the Central High Plains will have insufficient water for irrigation within the next 20 to 30 years, whereas most of the Northern High Plains will experience little change in storage. In the western parts of the Central and northern part of the Southern High Plains, saturated thickness has locally declined by more than 50%, and is currently declining at rates of 10% to 20% of initial thickness per decade. The most agriculturally productive portions of the High Plains will not support irrigated production within a matter of decades without significant changes in management.  相似文献   
66.
This paper seeks to arrive at a consistent interpretation of (1) the age model, (2) the grain size record, and (3) seismic reflection data from Lake Hovsgol (a.k.a Khubsugul or Hövsgöl), Mongolia, reported by Fedotov et al. (2007, earlier by Fedotov et al. 2002, 2004). In their most recent contribution, the grain size record of the KDP-01 drill core is interpreted as a climatic signal while little consideration is given to lake-level changes and hence to basin-wide changes in depositional setting evident from seismic profiles; also, a nearly linear age model is at odds with the seismic evidence for a major angular unconformity in the sediment strata. The lack of regional seismic stratigraphic analysis has thus led to an improbable interpretation of the Lake Hovsgol sediment grain size record and ultimately to an improbable scenario of Mongolian glaciation history. Using the available seismic profiles, here we show that the drill core penetrated several transgressive/regressive sedimentary sequences and a major angular unconformity. Therefore, the drilled sediment section cannot represent continuous sediment accumulation and the Brunhes age model across the unconformity cannot be nearly linear; the time interval representing a hiatus remains to be determined. The assumed nearly linear age/depth relationship in the upper 23 m above the angular unconformity is also an unlikely relationship, given the evidence of repeated changes in lake level, and hence in the depositional setting and sedimentation rates. We further propose a qualitative reference model for changes in the Lake Hovsgol depositional setting (presented as a step-by-step animation – see supplementary material) based on manually ‘backstripping and rebuilding’ the seismic pattern. We argue that this model provides a useful template of the likely sediment facies changes in the deep axial part of the Hovsgol basin: our crude model in fact captures the major depositional trends in the KDP-01 drill core section located some 10 km NW along the seismic line. We contend that changes in the depositional setting provide the first-order control on sediment grain size in the Hovsgol record. Our study provides important new constraints on the nature of sedimentary proxy records in Lake Hovsgol and on their interpretation as a record of Mongolian glaciation history.  相似文献   
67.
68.
Locating microseismic events using borehole data   总被引:1,自引:0,他引:1  
Constraining microseismic hypocentres in and around hydrocarbon reservoirs and their overburdens is essential for the monitoring of deformation related to hydraulic fracturing, production and injection and the assessment of reservoir security for CO2 and wastewater storage. Microseismic monitoring in hydrocarbon reservoirs can be achieved via a variety of surface and subsurface acquisition geometries. In this study we use data from a single, subsurface, vertical array of sensors. We test an existing technique that uses a 1D velocity model to constrain locations by minimizing differential S‐to‐P arrival times for individual sensors. We show that small errors in either arrival time picks or the velocity model can lead to large errors in depth, especially near velocity model discontinuities where events tend to cluster. To address this issue we develop two methods that use all available arrival times simultaneously in the inversion, thus maximizing the number of potential constraints from to N, where N is the number of phase picks. The first approach minimizes all available arrival time pairs whilst the second approach, the equal distance time (EDT) method defines the hypocentre as the point where the maximum number of arrival time surfaces intersect. We test and compare the new location procedures with locations using differential S‐to‐P times at each individual sensor on a microseismic data set recorded by a vertical array of sensors at the Ekofisk reservoir in the North Sea. Specifically, we test each procedure's sensitivity to perturbations in measured arrival times and the velocity model using Monte Carlo analysis. In general, location uncertainties increase with increasing raypath length. We show that errors in velocity model estimates are the most significant source of uncertainty in source location with these experiments. Our tests show that hypocentres determined by the new procedures are less sensitive to erroneous measurements and velocity model uncertainties thus reducing the potential for misinterpretation of the results.  相似文献   
69.
70.
Joint application of the Mo isotope paleoredox proxy and Re-Os deposition-age geochronometer to euxinic black shales has potential for tracing the evolution of ocean redox chemistry over geological time. Here, we report new Re-Os and Mo isotope data for the Mesoproterozoic Velkerri Formation (Roper Group) and Paleoproterozoic Wollogorang Formation (Tawallah Group), McArthur Basin, northern Australia. New Re-Os ages of 1361 ± 21 Ma (2σ, n = 14, mean square of weighted deviates [MSWD] = 1.3, Model 1) and 1417 ± 29 Ma (2σ, n = 12, MSWD = 1.3, Model 1) constrain the depositional age of the Velkerri Formation and its contained biomarkers, as well as acritarchs and microfossils from the Roper Group. Black shales from the upper Velkerri Formation have high Mo abundances (105-119 ppm) and degree of pyritization [DOP] values (0.90-0.92) implying quantitative conversion of molybdate (MoO42−) to thiomolybdate (MoS42−) in overlying bottom waters. The average δ97/95Mo (0.72 ± 0.10‰, 2σ, n = 6) of these shales is consistent with previous data, but represents a significantly more precise determination for global seawater δ97/95Mo at 1.4 Ga. This value is lighter than present-day seawater by ∼0.85‰ and reflects expanded strongly euxinic deep ocean conditions ([H2S]aq > 11 μM) relative to oxic, suboxic, and weakly/intermittently euxinic ([H2S]aq < 11 μM) marine deposition in the 1.4 Ga oceans. Mass-balance modelling suggests Mo removal into strongly euxinic and oxic sediments may have comprised 30-70% and less than 15%, respectively, of the oceanic Mo sink at 1.4 Ga as opposed to 5% and 35% today, respectively.The Re-Os radioisotope system in organic-rich shales serves as a test for post-depositional alteration that could affect the usefulness of paleoredox tracers such as Mo stable isotopes. Re-Os isotope data for the Wollogorang Formation black shales are scattered and yield a highly imprecise date of 1359 ± 150 Ma (2σ, n = 21, MSWD = 85, Model 3). This age is younger than U-Pb zircon ages from interbedded tuffs that constrain the age of deposition at ca. 1730 Ma. In conjunction with previous petrological, geochemical, and paleomagnetic data, the Re-Os isotope data suggest hydrothermal fluid flow through the Wollogorang Formation, possibly associated with formation of the ca. 1640 Ma McArthur River Pb-Zn-Ag sedimentary exhalative deposit, resulted in post-depositional mobilization of Re and Os. Based on the degree of deviation of the Re-Os data from a 1730 Ma reference line, open-system behavior of Re and Os was greatest near the base of the black shale unit. Wollogorang Formation black shales are enriched in Mo (41-58 ppm), but are characterized by variable δ97/95Mo (0.3-0.8‰) and DOP (0.57-0.92). The lightest δ97/95Mo values occur near the base of the black shale unit. Based on the Re-Os systematics, hydrothermal fluids have probably overprinted the authigenic δ97/95Mo signature in those shales. However, the heaviest δ97/95Mo values in the Wollogorang Formation come from stratigraphically higher shales, and are similar to those observed for the Velkerri Formation, and thus may reflect seawater δ97/95Mo at 1.73 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号