首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71921篇
  免费   1439篇
  国内免费   651篇
测绘学   1749篇
大气科学   5198篇
地球物理   14442篇
地质学   25581篇
海洋学   6186篇
天文学   16464篇
综合类   208篇
自然地理   4183篇
  2022年   397篇
  2021年   707篇
  2020年   792篇
  2019年   832篇
  2018年   1930篇
  2017年   1789篇
  2016年   2283篇
  2015年   1361篇
  2014年   2224篇
  2013年   3844篇
  2012年   2296篇
  2011年   3148篇
  2010年   2653篇
  2009年   3550篇
  2008年   3281篇
  2007年   3081篇
  2006年   2913篇
  2005年   2369篇
  2004年   2263篇
  2003年   2127篇
  2002年   1944篇
  2001年   1814篇
  2000年   1740篇
  1999年   1389篇
  1998年   1480篇
  1997年   1407篇
  1996年   1112篇
  1995年   1161篇
  1994年   978篇
  1993年   883篇
  1992年   857篇
  1991年   774篇
  1990年   863篇
  1989年   724篇
  1988年   658篇
  1987年   824篇
  1986年   670篇
  1985年   859篇
  1984年   931篇
  1983年   879篇
  1982年   838篇
  1981年   714篇
  1980年   674篇
  1979年   616篇
  1978年   617篇
  1977年   563篇
  1976年   549篇
  1975年   505篇
  1974年   516篇
  1973年   482篇
排序方式: 共有10000条查询结果,搜索用时 619 毫秒
241.
The structure of beam noise measured at the output of a vertical array in a range dependent ocean basin was investigated using the modified wide-angle parabolic equation (PE). Noise sources were distributed throughout the basin, and the field due to each noise source at an array located in the midbasin was calculated. The response of the array to the superposition of the noise sources was found by beamforming. An efficient and direct approach that superimposes the noise sources on the PE field as the field is marched toward the array was developed. Downslope calculations of the midbasin vertical directionality were made between 50 and 400 Hz with this technique. Use of a geoacoustic model shows that the bottom behaves as a low-pass filter  相似文献   
242.
A four-year record from an inverted echo sounder deployed near Palmyra Island at 6°N in the central Pacific Ocean is compared with a simultaneous record of subsurface pressure from this island lagoon. A factor m, converting round-trip acoustic travel time to surface dynamic height relative to a deep pressure level, was estimated from the ratio of the spectra of the two records in the energetic synoptic oscillation band. Year-to-year variation in m was not statistically significant. For the overall record, m was found to be -70±8 dynamic m/s, where the error bounds represent a 90% confidence interval. This is consistent with first-baroclinic-mode excitation  相似文献   
243.
244.
The “Shiva Hypothesis”, in which recurrent, cyclical mass extinctions of life on Earth result from impacts of comets or asteroids, provides a possible unification of important processes in astrophysics, planetary geology, and the history of life. Collisions with Earth-crossing asteroids and comets ≥ a few km in diameter are calculated to produce widespread environmental disasters (dust clouds, wildfires), and occur with the proper frequency to account for the record of five major mass extinctions (from ≥ 108 Mt TNT impacts) and ~ 20 minor mass extinctions (from 107–108 Mt impacts) recorded in the past 540 million years. Recent studies of a number of extinctions show evidence of severe environmental disturbances and mass mortality consistent with the expected after-effects (dust clouds, wildfires) of catastrophic impacts. At least six cases of features generally considered diagnostic of large impacts (e.g., large impact craters, layers with high platinum-group elements, shock-related minerals, and/or microtektites) are known at or close to extinction-event boundaries. Six additional cases of elevated iridium levels at or near extinction boundaries are of the amplitude that might be expected from collision of relatively low-Ir objects such as comets. The records of cratering and mass extinction show a correlation, and might be explained by a combination of periodic and stochastic impactors. The mass extinction record shows evidence for a periodic component of about 26 to 30 Myr, and an ~ 30 Myr periodic component has been detected in impact craters by some workers, with recent pulses of impacts in the last 2–3 million years, and at ~ 35, 65, and 95 million years ago. A cyclical astronomical pacemaker for such pulses of impacts may involve the motions of the Earth through the Milky Way Galaxy. As the Solar System revolves around the galactic center, it also oscillates up and down through the plane of the disk-shaped galaxy with a half-cycle ~ 30±3 Myr. This cycle should lead to quasi-periodic encounters with interstellar clouds, and periodic variations in the galactic tidal force with maxima at times of plane crossing. This “galactic carrousel” effect may provide a viable perturber of the Oort Cloud comets, producing periodic showers of comets in the inner Solar System. These impact pulses, along with stochastic impactors, may represent the major punctuations in earth history.  相似文献   
245.
This paper presents a three-dimensional analytic linear wave solution for surface gravity wave propagation over a sloping bottom that is valid for small, but realistic, slopes. The sloping-bottom linear model is compared to published laboratory data and to predictions of two-dimensional, constant-bottom nonlinear theories. The model is shown to describe the measured wave-height growth in the wave transformation region up to a limiting local Ursell number Ur of 0.35-1.0, depending on the wave type, although, as a linear model, it does not predict the harmonics observed in that range. For Ur<0.35, the harmonics can generally be neglected and the sloping-bottom linear theory agrees closely with both the published wave-height data and third-order Stokes nonlinear theory. As a three-dimensional linear model, superposition can be invoked to synthesize and relate wave structure in the transformation region to complex incident ocean spectra with both wind wave and swell components that arrive with a range of incidence angles. As such, the sloping-bottom linear model presented here should be a convenient useful tool for ocean modeling through a significant portion of the wave transformation region  相似文献   
246.
The process of non-linear ambipolar diffusion in the region overlying the solar surface can be an effective mechanism for producing sharp magnetic structures and current sheets. These may be the sites responsible for the occurrence of connectivity of magnetic field lines, and the subsequent explosive input of energy for heating of some of the features in the atmosphere of the Sun..  相似文献   
247.
This paper reviews spectra obtained with the SWS on board of ISO of dust shells around O-rich objects. These spectra reveal the presence of many new emission features between 10 and 45 μm. These bands are generally much narrower than the well-known 10 and 20 μm silicates features. The strength of these features relative to the underlying broad continuum varies from source to source (≅ 5-50%). The 10 μm region shows evidence for the presence of Al2O3 grains. At longer wavelength, the spectra are dominated by features due to crystalline olivine and pyroxene. The exact peak position of these features shows that the emitting grains consist of the Mg-rich end-members of these minerals with an Fe-content of < 10%. The underlying continuum is attributed to amorphous silicate grains. These observations of aluminum-rich and magnesium-rich compounds compare well with the thermodynamic condensation sequence of minerals expected for O-rich outflows. The observations also imply that freeze out (ie., kinetics) of this condensation sequence at different temperatures is an important characteristic of dust formation in these objects. It is suggested that the absence of Fe-rich silicates is a natural consequence of the low temperature at which gaseous Fe reacts with Mg-rich silicates in these outflows, resulting in amorphous grains with little characterizing spectral detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
248.
White mica from the Liassic black shales and slates in Central Switzerland was analysed by transmission electron microscopy (TEM) and electron microprobe to determine its textural and compositional evolution during very low-grade prograde metamorphism. Samples were studied from the diagenetic zone, anchizone and epizone (T ≈100°–450 °C). Phyllosilicate minerals analysed include illite/smectite (I/S), phengite, muscovite, brammallite, paragonite, margarite and glauconite. Textural evolution primarily is towards larger, more defect-free grains with compositions that approach those of their respective end-members. The smectite-to-illite transformation reduced the amounts of the exchange components SiK?1Al?1, MgSiAl?2, and Fe3+Al?1. These trends continue to a lesser degree in the anchizone and epizone. Correlations between the proportion of smectite in I/S and the composition of I/S indicate that smectite layers may contain a high layer charge. Illite in I/S bears a compositional resemblance to macrocrystalline phengite in some samples, but is different in others. Paragonite first appears in the upper diagenetic zone or lower anchizone as an interlayer-deficient brammallite, and it may be mixed with muscovite on the nanometre scale. Owing to the small calculated structure factor for paragonite-muscovite superstructures, conventional X-ray powder diffraction cannot distinguish between mixed-layer structures and a homogeneous compositionally intermediate solid solutions. However, indirect TEM evidence shows that irregularly shaped domains of Na- and K-rich mica exist below 10 nm. Subsequent coarsening of domains at higher grades produced discrete paragonite grains at the margins of muscovite crystals or in laths parallel to the basal plane of the host muscovite. Margarite appears in the epizone and follows a textural evolution similar to paragonite in that mixtures of margarite, paragonite, and muscovite may initially occur on the nanometre scale. However, no evidence of interlayer-poor margarite has been found.  相似文献   
249.
We create mock pencil-beam redshift surveys from very large cosmological N -body simulations of two cold dark matter (CDM) cosmogonies, an Einstein–de Sitter model ( τ CDM) and a flat model with Ω0=0.3 and a cosmological constant (ΛCDM). We use these to assess the significance of the apparent periodicity discovered by Broadhurst et al. Simulation particles are tagged as 'galaxies' so as to reproduce observed present-day correlations. They are then identified along the past light-cones of hypothetical observers to create mock catalogues with the geometry and the distance distribution of the Broadhurst et al. data. We produce 1936 (2625) quasi-independent catalogues from our τ CDM (ΛCDM) simulation. A couple of large clumps in a catalogue can produce a high peak at low wavenumbers in the corresponding one-dimensional power spectrum, without any apparent large-scale periodicity in the original redshift histogram. Although the simulated redshift histograms frequently display regularly spaced clumps, the spacing of these clumps varies between catalogues and there is no 'preferred' period over our many realizations. We find only a 0.72 (0.49) per cent chance that the highest peak in the power spectrum of a τ CDM (ΛCDM) catalogue has a peak-to-noise ratio higher than that in the Broadhurst et al. data. None of the simulated catalogues with such high peaks shows coherently spaced clumps with a significance as high as that of the real data. We conclude that in CDM universes, the regularity on a scale of ∼130  h −1 Mpc observed by Broadhurst et al. has a priori probability well below 10−3.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号