首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5593篇
  免费   567篇
  国内免费   163篇
测绘学   237篇
大气科学   619篇
地球物理   2020篇
地质学   2258篇
海洋学   299篇
天文学   419篇
综合类   187篇
自然地理   284篇
  2024年   3篇
  2023年   7篇
  2022年   12篇
  2021年   30篇
  2020年   19篇
  2019年   18篇
  2018年   447篇
  2017年   388篇
  2016年   265篇
  2015年   163篇
  2014年   134篇
  2013年   133篇
  2012年   668篇
  2011年   453篇
  2010年   143篇
  2009年   153篇
  2008年   143篇
  2007年   129篇
  2006年   141篇
  2005年   842篇
  2004年   878篇
  2003年   662篇
  2002年   185篇
  2001年   78篇
  2000年   54篇
  1999年   20篇
  1998年   11篇
  1997年   20篇
  1996年   11篇
  1994年   5篇
  1992年   3篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1987年   4篇
  1984年   5篇
  1983年   5篇
  1980年   3篇
  1978年   4篇
  1976年   4篇
  1975年   6篇
  1973年   6篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6323条查询结果,搜索用时 15 毫秒
991.
We have investigated the near liquidus phase relations of a primitive absarokite from the Mascota region in western Mexico. Sample M.102 contains ~11.6 wt% MgO, Mg#=0.73 and the lava contains Fo90 olivine phenocrysts, indicating near equilibrium with the mantle. High-pressure experiments on a synthetic analogue of the absarokite composition containing low and high H2O abundances of (~2 and ~5 wt%, respectively) were performed in a piston cylinder apparatus over the pressure range of 1.2 to 2.0 GPa. The composition containing ~2 wt% H2O is multiply saturated with olivine and orthopyroxene at 1.6 GPa and 1,400 °C. At the same pressure, clinopyroxene appears 30 °C below the liquidus. At an H2O content of ~5 wt% the multiple saturation with olivine and orthopyroxene occurs at 1.7 GPa and 1,300 °C. Assuming a batch-melting process, we suggest that the primitive absarokite was segregated from a depleted lherzolite or harzburgite residue at ~50 km, placing the depth of origin well within the mantle wedge beneath the Jalisco Block. A low degree (<5 %wt%) batch-melt of an original metasomatized depleted lherzolite or harzburgite source would contain the observed trace element abundances found in M.102. The liquidus phase relations are not consistent with the presence of non-peridotitic veins at the depth of last equilibration. Therefore, we propose that the Mascota absarokites segregated at an apparent melt fraction of less than 5% from a depleted peridotitic source. Melting first began at a greater depth as a small degree H2O- and trace element- rich melt of a metasomatized peridotite that ascended into the overlying wedge and re-equilibrated with shallower, hotter mantle.Editorial responsibility: J. Hoefs  相似文献   
992.
探讨了现行有关规范用于黄土地区存在的某些不足,阐明了场地条件和场地类别等因素对抗震设防参数的影响问题,强调了重视地方标准的制定的必要性。同时也展望了今后尚需开展的研究工作。  相似文献   
993.
Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3–50.3 wt% SiO2, Mg# 64–65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7–52.6 wt% SiO2, Mg# 58–62) and Sulphur Creek (51.2–54.6 wt% SiO2, Mg# 56–57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8–54.0 wt% SiO2, Mg# 68–70) and the HMA of Glacier Creek (58.3–58.7 wt% SiO2, Mg# 63–64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2–52.6 wt% SiO2, Mg# 55–58), is an Mg-poor differentiate of the Type 3 endmember. The calc-alkaline lavas are least enriched in a subduction component (lowest H2O, Sr/PN, and Ba/Nb), the LKOT-like lavas are intermediate (moderate Sr/PN and Ba/Nb), and the HMBA are most enriched (highest H2O, Sr/PN and Ba/Nb). The generation of the LKOT-like and calc-alkaline lavas can be successfully modeled by partial melting of a spinel lherzolite with variability in composition of slab flux and/or mantle source depletion. The HMBA lavas can be successfully modeled by partial melting of a garnet lherzolite with slab flux compositionally similar to the other lava types, or less likely by partial melting of a spinel lherzolite with a distinctly different, HREE-depleted slab flux.  相似文献   
994.
Roof separation is one of the major indications for coal mine roadway roof accidents. Therefore, it is important that efforts be made to detect roadway roof separation. Currently, the instrument used for detecting roadway roof separation is the roof-off-the-strata indicator, but its installation and use is complicated and the need is greater than can be managed. This thesis takes ground penetrating radar (GPR) as a means for roof separation detection and analyzes its feasibility for use in detecting roof separation both theoretically and experimentally. First, numerical simulation experiments on roof separation detection are carried out using GprMax2D software. The results show that it is feasible to detect roof separation by using GPR electromagnetic waves. Next, physical simulation experiment on roof separation detection is carried out using MALA GPR (RAMAC/GPR). Lastly,  the traditional image segmentation algorithm of 2D maximum between a cluster variance is improved to interpret the GPR signal. Good results were achieved using the improved algorithm to interpret detection signals of roof separation by GPR in a physical simulation experiment.  相似文献   
995.
Increased interest in climate change at local and regional scales has prompted climate simulations for regional areas, but tests of climate models have not specifically examined the impacts of regional heterogeneity, and they have largely overlooked possible temporal sensitivity. In this study I used a coupled surface-atmosphere mesoscale model to evaluate the effects of regional heterogeneity in five land-surface parameters that have the strongest impacts on the surface energy balance: albedo, roughness, canopy resistance, rooting profile, and soil water content. I included temporal variability in climate sensitivity by completing a series of mid-month simulations representative of the June-September growing season. I modeled land surfaces of maize contrasted with bare soil, grass, or coniferous trees. Roughness discontinuities were important factors in determining regional energy balance and surface temperature for all three surface contrasts. The effects varied over the growing season as a function of maize height. Canopy resistance was equally important, especially during the middle of the season when the maize canopy was at its fullest extent. Albedo effects appeared to be secondary, but often were more important in September. Changes in soil water content had little impact because vegetation in these simulations was not stressed by low soil moisture. The importance of roots in these simulations was primarily a function of their presence or absence, rather than of the specific profile assigned to each vegetation type. Roughness and canopy resistance discontinuities appeared to play the largest role in determining the regional average energy balance and surface temperature for growing season dates. [Key words: land-surface heterogeneity, energy balance, climatology.]  相似文献   
996.
Microwave satellite images used for retrieving sea surface temperatures often have such distortions as noise and blurring of the thermal fronts. An image processing approach based on the Mumford-Shah model of optimal image approximation is considered for the solution to this problem. We divide images into flat areas and frontal zones, and then process these areas separately. Image fragmentation is based on automatic detection of the thermal front lines. SST enhancement in frontal zones is achieved by using image deconvolution methods. It has been shown that SST errors in high gradient areas reach 1–3 °C. The proposed approach can decrease this discrepancy.  相似文献   
997.
We study the importance of the zones of weakness and the pattern of downgoing flow in steady-state models of subducting lithosphere, which interacts mechanically and thermally with the ambient mantle. The non-linear system of governing equations consists of (i) the momentum equation in stream function formulation and (ii) the steady-state heat transfer equation including conduction and advection of heat and dissipation. A finite element method has been applied to this system. We consider the viscosity to be a non-linear function of both the temperature and the stream function. In steady-state two-dimensional (2D) flow, the stream function isolines follow material trajectories. They are used to follow the top of the subducting slab, which because of its possible increase in water content, is assumed to have a lower viscosity. The zone of weakness has been thus obtained in the self-consistent fashion since the stream function as well as the temperature are the output from our modeling and no a priori assumptions about the shape of the bending lithosphere are taken into account. It was shown that several orders decrease of viscosity in the zone of weakness is required to obtain the dip angle of about 45°. If the decrease of viscosity is not sufficient enough, the subducted slab either sinks almost vertically or does not exhibit a plate-like behavior. We have also demonstrated that shear heating can unrealistically increase at the zone of weakness for fast subductions if decrease of viscosity is underestimated.  相似文献   
998.
Groundwater vulnerability has been subject of much research due to the valuable information it provides concerning groundwater protection and exploitation potential. Up to now, most groundwater vulnerability studies adopt subjective systems of rating the various factors and subsequently, their results are often ambiguous and contradicting. Within the present study a methodology for the estimation of intrinsic groundwater vulnerability at the aquifer scale is presented. The methodology is based on travel time estimation from specified sources of pollution to the aquifer. Besides the deterministic calculation of travel times, the methodology provides a rating system for each pollution source, based on its relative severity and the estimated threat that it poses to the aquifer. Therefore, it can be regarded as a hybrid method that couples the advantages provided by the physically based methods with those of the subjective rating systems. The methodology is applied to the Neon Sidirochorion aquifer, Northeastern Greece, an overexploited aquifer where river waters, sea waters and lake waters interact, causing groundwater quality deterioration to the aquifer. The results indicated that the proposed groundwater vulnerability assessment methodology is well capturing pollution related to saltwater intrusion and agricultural activities, while it is concluded that the conceptual model is significantly affecting the vulnerability assessment results and therefore has to be previously developed.  相似文献   
999.
Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.  相似文献   
1000.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号