首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   17篇
  国内免费   3篇
测绘学   16篇
大气科学   61篇
地球物理   173篇
地质学   276篇
海洋学   75篇
天文学   91篇
综合类   3篇
自然地理   56篇
  2021年   8篇
  2020年   7篇
  2018年   11篇
  2016年   13篇
  2015年   6篇
  2014年   19篇
  2013年   30篇
  2012年   21篇
  2011年   21篇
  2010年   15篇
  2009年   33篇
  2008年   29篇
  2007年   25篇
  2006年   33篇
  2005年   22篇
  2004年   23篇
  2003年   15篇
  2002年   22篇
  2001年   19篇
  2000年   7篇
  1999年   13篇
  1998年   12篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   7篇
  1992年   8篇
  1991年   10篇
  1987年   8篇
  1985年   7篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1981年   8篇
  1980年   8篇
  1977年   13篇
  1976年   8篇
  1975年   7篇
  1974年   9篇
  1972年   11篇
  1970年   7篇
  1968年   6篇
  1964年   8篇
  1959年   5篇
  1955年   7篇
  1954年   9篇
  1952年   6篇
  1950年   8篇
  1948年   8篇
排序方式: 共有751条查询结果,搜索用时 0 毫秒
91.
An evolutionary model of sedimentary environments since late Marine Isotope Stage 3 (late MIS 3, i.e., ca. 39 cal ka BP) along the middle Jiangsu coast is presented based upon a reinterpretation of core 07SR01, new correlations between adjacent published cores, and shallow seismic profiles recovered in the Xiyang tidal channel and adjacent northern sea areas. Geomorphology, sedimentology, radiocarbon dating and seismic and sequence stratigraphy are combined to confirm that environmental changes since late MIS 3 in the study area were controlled primarily by sea-level fluctuations, sediment discharge of paleo-rivers into the South Yellow Sea (SYS), and minor tectonic subsidence, all of which impacted the progression of regional geomorphic and sedimentary environments (Le., coastal barrier island freshwater lacustrine swamp, river floodplain, coastal marsh, tidal sand ridge, and tidal channel). This resulted in the formation of a fifth-order sequence stratigraphy, comprised of the parasequence of the late stage of the last interstadial (Para-Sq2), including the highstand and forced regressive wedge system tracts (HST and FRWST), and the parasequence of the postglacial period (Para-Sql), including the transgressive and highstand system tracts (TST and HST). The tidal sand ridges likely began to develop during the postglacial transgression as sea-level rise covered the middle Jiangsu coast at ca. 9.0 cal ka BP. These initially submerged tidal sand ridges were constantly migrating until the southward migration of the Yellow River mouth to the northern Jiangsu coast during AD 1128 to 1855. The paleo-Xiyang tidal channel that was determined by the paleo-tidal current field and significantly different from the modern one, was in existence during the Holocene transgressive maxima and lasted until AD 1128. Following the capture of the Huaihe River in AD 1128 by the Yellow River, the paleo-Xiyang tidal channel was infilled with a large amount of river-derived sediments from AD 1128 to 1855, causing the emergence of some of the previously submerged tidal sand ridges. From AD 1855 to the present, the infilled paleo-Xiyang tidal channel has undergone scouring, resulting in its modern form. The modern Xiyang tidal channel continues to widen and deepen, due both to strong tidal current scouring and anthropogenic activities.  相似文献   
92.
93.
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N2) fixation is estimated to supply 8×1012 moles N y?1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H2), but the extent to which it leads to supersaturation of H2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H2 concentration (nmol L?1), and rates of N2 fixation (μmol N m?3 d?1), determined using 15N2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation (r=0.98) between dissolved H2 and rates of N2 fixation, with the greatest supersaturation of H2 and highest rates of N2 fixation being observed in the subtropical gyres at the southern (~18°S) and northern (18°N) reaches of the transect. The lowest H2 saturation and N2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H2 supersaturations and N2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.  相似文献   
94.
95.
96.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   
97.
The extent to which riverine Os is trapped in a temperate estuary was the aim of this study. The behavior of Os through the Hudson River, East River and the Long Island Sound (LIS) system is addressed using both natural Os and anthropogenically mobilized Os. The Os concentration ([Os]) and isotopic composition (187Os/188Os) of the Mid-Atlantic Bight as inferred from the analysis of a water sample of 31‰ salinity (S) at Vineyard Sound, MA are 46 fM and 1.070, respectively. In comparison, the Hudson River at Newburgh, NY has [Os] = 68 fM and 187Os/188Os = 1.265. The Os concentration of the East River at the Whitestone Bridge is 51 fM and remains essentially constant proceeding eastward in the LIS despite the increase of salinity from 20‰ towards the higher value of the Mid-Atlantic Bight. The 187Os/188Os ratio of water at Whitestone Bridge is 0.945 and increases eastward through the Sound to 0.979 at 7 km and then to 1.019 at 39.6 km. The behavior of Os through LIS appears to be conservative at S > 20‰. On the basis of Os concentration and isotopic composition we infer that anthropogenic Os is being added to the East River through sewers with the likely isotopic ratio of ∼0.13 and that about 24% of riverine Os must be removed at S ? 20‰. There is a net transport of about 0.4-1 mole of anthropogenic Os per year from the East River into the LIS. The residence time of Os in the ocean at present must be about 39,000 years, unless an independent source of supply of Os can be identified.  相似文献   
98.
Zusammenfassung Diskordanzen sind nicht die einzigen Anzeichen orogener Bewegungen; sie entstehen nur bei Sedimentationsunterbrechung und sind ceteris paribus um so grö\er, je länger die Unterbrechung dauerte. Eine Diskordanz ist kein Anzeichen für das Ende einer Bewegung; diese kann synsedimentär weitergehen. Bei synsedimentärer Bewegung konvergiert Dach und Sohle eines Schichtsto\es gegen das Hoch. Wenigstens in den Tiefs herrscht bei synsedimentärer Orogenese Konkordanz.über die Zurechnung einer Bewegung zur Orogenese oder Epirogenese entscheidet nicht die Dauer oder der Diskordanzwinkel, sondern das entstehende Gefüge. Die Wellenlänge der Faltung steht in umgekehrtem Verhältnis zur Intensität der gebirgsbildenden Kraft.Die Orogenese dauert oft durch geologische Stufen oder Formationen kontinuierlich an. Sie verläuft örtlich ruckweise — Spannungsausgleich in mechanisch inhomogenem Medium. Die Paroxysmen sind weder erdweit noch gleichzeitig.Als Phase möchten wir einen im gro\en einheitlichen orogenen Vorgang bezeichnen ohne Rücksicht auf die mechanisch bedingten zeitweiligen örtlichen Intensitätsunterschiede. Anfang und/oder Ende dieser Phasen ändern sich längs des Orogens.  相似文献   
99.
Abstract

In this study, the development of a moderate coastal storm with intense precipitation that occurred during 12–14 February 1993 is examined using a high‐resolution version of the Canadian Regional Finite‐element (RFE) model with more realistic physical representations. It is shown that the improved RFE model predicts well the coastal cyclogenesis events and also the distribution and intensity of heavy mixed precipitation (rain and snow) associated with the storm. It is found that the cyclogenesis takes place in response to the low‐level inshore advection of high‐θe air from the maritime boundary layer, and the approach of a mid‐level shortwave trough with a warm pool above that is previously associated with a decaying cyclone upstream. More rapid deepening of the cyclone ensues as intense precipitation falls along the warm and cold fronts near the cyclone centre.

Diagnosis of the control and sensitivity simulations reveals that the low‐level inshore warm advection and the propagation of the stratospheric warm pool contribute more significantly to the surface pressure falls during the incipient stage, whereas the mid‐level shortwave trough plays an important role in the cyclogenesis at later stages. Overall, latent heat release accounts for about 50% of the cyclone's total deepening, in agreement with the presence of a moderate baroclinic environment and the generation of intense precipitation.

The diabatic and kinematic structures near the rain‐snow boundary are examined to gain insight into the influence of melting snow on the cyclogenesis. It is shown that the improved RFE model reproduces well the rain‐snow boundary structures as previously observed. Moreover, a thermally indirect circulation (perturbation) can be seen in the vicinity of the rain‐snow boundary. It is found, however, that melting of snow tends to produce a weak negative or negligible impact on the cyclogenesis, as opposed to previous hypotheses.  相似文献   
100.
It is often desirable or necessary to store collected seawater samples prior to analysis for dissolved inorganic nutrients. It is therefore important to establish preservation and storage techniques that will ensure sample integrity and will not alter the precision or accuracy of analysis. We have performed a series of experiments on the storage of nutrient samples collected at the oligotrophic North Pacific benchmark Station ALOHA, using both standard autoanalyses and low-level techniques. Our results reveal that for oligotrophic oceanic waters, the immediate freezing of an unfiltered water sample in a clean polyethylene bottle is a suitable preservation method. This procedure is simple, it avoids potentially contaminating sample manipulations and chemical additions, and it adequately preserves the concentrations of nitrate + nitrite, soluble reactive phosphate, and soluble reactive silicate within a single water sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号