首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   17篇
  国内免费   2篇
测绘学   12篇
大气科学   9篇
地球物理   72篇
地质学   102篇
海洋学   29篇
天文学   31篇
综合类   3篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   5篇
  2020年   8篇
  2019年   10篇
  2018年   10篇
  2017年   19篇
  2016年   19篇
  2015年   9篇
  2014年   20篇
  2013年   26篇
  2012年   11篇
  2011年   10篇
  2010年   7篇
  2009年   10篇
  2008年   9篇
  2007年   12篇
  2006年   5篇
  2005年   9篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有263条查询结果,搜索用时 0 毫秒
91.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
92.
Impacts to shallow-water estuarine habitats should be assessed in a holistic context reflecting both the interrelatedness of habitats that characterize these environments and the history of impacts, human and natural, that have shaped their present ecology. In a holistic context these habitats are considered to be dynamic associations of macrohabitats and micro-habitats, interacting through time to affect the quantity (Q1), quality (Q2), and timing (T) of material and energy transfer within the system. Where data are available, this holistic approach (Q1, Q2 and T or Q2T) allows impacts to be evaluated in a multidimensional framework of time and space. Unfortunately, few data are available to evaluate the long-term implications of timing, the T factor. Recorded observations of most estuarine systems cover tens of years, periods not extensive enough to assess long-term changes to the environment or to distinguish man's impacts from those of nature. Sustained droughts, for example, can cause massive disruption in estuaries, altering habitats and species composition. When these changes occur over periods of 5–10 yr, the changes are difficult to identify and may be attributed to man's activities rather than nature's Using the Hudson River estuary as an example, we have knowledge of historical impacts extending back to the 1700s, ranging from dredging to major droughts. For the Hudson River, recorded observations of rainfall and river flow extend back about 70 yr; however, tree rings provide a more extensive record since tree growth increments are directly dependent upon rainfall. The Hudson River drought record was extended back to 1694 using tree rings. Using the reconstructed record, the relationship between today's conditions—flow and average location of the ocean-derived salt front—can be placed in a historical context. This historical perspective allows us to place present-day human impacts into the contex of long-term natural impacts and to discriminate among these effects. The drought example is particularly relevant to shallow-water habitats because these habitats provide an interface between fresh and marine waters. *** DIRECT SUPPORT *** A01BY074 00008  相似文献   
93.
We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June–September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades.  相似文献   
94.
Identification of temporal changes in hydrological regimes of river basins is an important topic in contemporary hydrology because of the potential impacts of climate change on river flow regimes.For this purpose,long-term historical records of rainfall(P),runoff(Q)and other climatic factors were used to investigate hydrological variability and trends in the Tajan River Basin over the period 1969e1998.Actual evaporation(E),rainfall variability index(d),evaporation ratio(CE)and runoff ratio(CQ)were estimated from the available hydroclimatological records.Mann-Kendall trend analysis and nonparametric Sen's slope estimates were performed on the respective time series variables to detect monotonic trend direction and magnitude of change over time.Rainfall variability index showed that 1973 was the wettest year(δ=+2.039)while 1985 was the driest(δ=-1.584).Also,decades 69e78 and 89e98 were recognized as the wettest and driest decades respectively.The gradient of variation of climatological parameters showed that during the study period,all three parameters of rainfall,evaporation and runoff have decreased and the variations of rainfall and evaporation were significant at the 95%level.Investigation of hydrological changes due of dam construction(1999)showed that the amount and annual distribution of discharge were completely different pre and post-dam construction.Discharge decreased in high water months and increased in low water months to meet water supply demands,especially for agriculture.The relationship between temperature and rainfall trends is compared for three stations in Mazandaran Province(Gorgan,Babolsar and Ramsar)from 1956 to 2003 and nine other stations with different statistical periods of 19e36 years,relating trends to northern hemisphere and global trends.Decreases in temperature were accompanied by decreases in rainfall,and vice versa.These trends were not observed in northern hemisphere and world scales,where temperature increases are accompanied by decreases in rainfall.These variations of hydroclimatological parameters show undesirable water resources situations during the statistical periods if the trend continues severe water resource crises.  相似文献   
95.
The trend of isolating highway bridges is on the rise after the recent large earthquakes in Japan, the United States, and other countries. Recent investigation shows that isolated systems perform well against seismic forces as the substructures of such systems experience less lateral forces due to energy dissipation of the isolation device. Hence, it is anticipated that there might be an effect on fragility curves of highway bridges due to isolation. In this study, 30 isolated bridge models were considered (and they were designed according to the seismic design code of highway bridges in Japan) to have a wider range of the variation of structural parameters, e.g. pier heights, weights, and over-strength ratio of structures. Then, fragility curves were developed by following a simplified procedure using 250 strong motion records, which were selected from 5 earthquake events that occurred in Japan, the USA, and Taiwan. It is observed that the level of damage probability for the isolated system is less than that of the non-isolated one for a lower level of pier height. However, having the same over-strength ratio of the structures, the level of damage probability for the isolated system is found to be higher for a higher level of pier height compared to the one of the non-isolated system. The proposed simple approach may conveniently be used in constructing fragility curves for a class of isolated bridge structures in Japan that have similar characteristics.  相似文献   
96.
We collected thermal infrared video of two explosive eruptions at Stromboli in June 2008 and manually traced the trajectories of 95 particles launched during two eruptions. We found that 10–15?% of the analyzed trajectories deviated from predicted curves due to collisions, causing one particle to travel horizontally more than twice as far as expected. Furthermore, we observed an oscillatory cooling behavior for the airborne pyroclasts, with a median period of 0.46?s. Measured cooling was typically much faster than model-predicted cooling with discrepancies of up to 40?% between measured cooling and theoretical modeling. We interpret the measured cooling curves as resulting from the spinning and twisting and tearing of particles during travel: the periodic re-exposing of the hotter core of the pyroclasts to the atmosphere may cause the observed oscillations, and the spinning may accelerate cooling by enhancing convective heat transfer. Current volcanic trajectory and cooling models do not account for projectile collisions, spinning, or tearing and can thus severely underestimate the maximum landing distance and cooling rates of large pyroclasts.  相似文献   
97.
Kick 'em Jenny volcano is the only known active submarine volcano in the Lesser Antilles. It lies within a horseshoe-shaped structure open to the west northwest, toward the deep Grenada Basin. A detailed bathymetric survey of the basin slope at Kick 'em Jenny and resulting high-resolution digital elevation model allowed the identification of a major submarine landslide deposit. This deposit is thought to result from a single sector collapse event at Kick 'em Jenny and to be linked to the formation of the horseshoe-shaped structure. We estimated the volume and the leading-edge runout of the landslide to be ca. 4.4 km3 and 14 km, respectively. We modelled a sector collapse event of a proto Kick 'em Jenny volcano using VolcFlow, a finite difference code based on depth-integrated mass and momentum equations. Our models show that the landslide can be simulated by either a Coulomb-type rheology with low basal friction angles (5.5°–6.5°) and a significant internal friction angle (above 17.5°) or, with better results, by a Bingham rheology with low Bingham kinematic viscosity (0 < ν B < 30 m2/s) and high shear strength (130 < γ ≤ 180 m2/s2). The models and the short runout distance suggest that the landslide travelled as a stiff cohesive flow affected by minimal granular disaggregation and slumping on a non-lubricated surface. The main submarine landslide deposit can therefore be considered as a submarine mass slide deposit that behaved like a slump.  相似文献   
98.
We propose a mechanical explanation for the low basal shear resistance (about 50 kPa) previously used to simulate successfully the complex, well-documented deposit morphology and lithological distribution produced by emplacement of the 25 km3 Socompa volcanic debris avalanche deposit, Chile. Stratigraphic evidence for intense basal comminution indicates the occurrence of dynamic rock fragmentation in the basal region of this large granular mass flow, and we show that such fragmentation generates a basal shear stress, retarding motion of the avalanche, that is a function of the flow thickness and intact rock strength. The topography of the Socompa deposit is realistically simulated using this fragmentation-derived resistance function. Basal fragmentation is also compatible with the evidence from the deposit that reflection of the avalanche from topography caused a secondary wave that interacted with the primary flow.  相似文献   
99.
During urban development, the land surface is changed from undisturbed soils with natural vegetative cover to disturbed soils, managed landscapes, and built materials [2]. The change in land uses causes the stormwater runoff from impervious areas to be as much as 16 times higher than from natural areas [5] which implies increase of frequency of local flooding and more contribution to the streams carrying urbanized runoff. The main streams in the periphery of city Chandigarh, India are Patiali ki Rao and Sukhna Choe. This study focuses on the identification and development of a real time model for prediction of increase in stormwater runoff to the streams and within the watershed of Chandigarh due to urbanization. The study has undertaken hydraulic modeling of Sukhna Choe using United States Army Corps of Engineers Hydraulic Engineering Centre River Analysis System (HEC-RAS) to understand the urgent need of control of stormwater runoff to deal with flooding issues of the city. It has been concluded from this study that the condition of streams has been deteriorating from past to present to future condition of development and the predicted HEC-RAS water surface elevations can be put into effect to plan further development in the city.  相似文献   
100.
Historically, there has been a dispute over water allocation between users and policymakers in Iran's Zayandeh-Roud Basin (ZRB). In this study, we used the “System of Environmental-Economic Accounting for Water” (SEEAW) framework in combination with the hydrologic model “Soil and Water Assessment Tool” (SWAT) to achieve the water balance in ZRB. We used SEEAW to combine a wide range of water-related statistics across stakeholders and SWAT to evaluate the unknown agricultural water use. The SWAT model is calibrated based on the stream flows and crop yields in the basin. The model assess the renewable water of the basin into two components, about 363 and 70 mm as green and blue water, respectively. Also results from the physical water supply and water use tables demonstrates that the agricultural sector uses 78% of the total renewable freshwater, followed by the residential, 16%, and the industrial sector, 6%. The flows of water from source to services in ZRB are traced based on the water supply and water use tables. The flow diagram shows that 8 MCM of industrial reused water was transferred to the agricultural sector, and 137 MCM and 18 MCM of water from the wastewater treatment plants to the agricultural and industrial sectors, respectively. Furthermore, the results show that the index of the basin dependence on groundwater resources is high (61%), the value of water stress is high (0.88) and the dependence of the basin on transboundary water resources is 30%. Therefore, this method is highly beneficial for achieving a conceptual water balance in disputed basins without enough agricultural water uses data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号