首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12302篇
  免费   153篇
  国内免费   71篇
测绘学   248篇
大气科学   795篇
地球物理   2319篇
地质学   4805篇
海洋学   1241篇
天文学   2548篇
综合类   50篇
自然地理   520篇
  2022年   146篇
  2021年   210篇
  2020年   195篇
  2019年   239篇
  2018年   541篇
  2017年   445篇
  2016年   496篇
  2015年   206篇
  2014年   442篇
  2013年   649篇
  2012年   493篇
  2011年   594篇
  2010年   594篇
  2009年   665篇
  2008年   605篇
  2007年   597篇
  2006年   518篇
  2005年   354篇
  2004年   328篇
  2003年   296篇
  2002年   291篇
  2001年   254篇
  2000年   264篇
  1999年   178篇
  1998年   188篇
  1997年   179篇
  1996年   119篇
  1995年   138篇
  1994年   119篇
  1993年   104篇
  1992年   75篇
  1991年   101篇
  1990年   101篇
  1989年   72篇
  1988年   81篇
  1987年   99篇
  1986年   81篇
  1985年   116篇
  1984年   98篇
  1983年   105篇
  1982年   89篇
  1981年   85篇
  1980年   97篇
  1979年   91篇
  1978年   88篇
  1977年   78篇
  1976年   59篇
  1975年   64篇
  1974年   72篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
311.
312.
A sudden release of large volumes of water during a glacier outburst flood (GLOF) is a major hazard worldwide. Here, we identify the sedimentary signature of glacial and non‐glacial processes, including GLOFs, based on lacustrine sediments from the distal glacier‐fed Lake Buarvatnet in western Norway. Historically documented GLOFs in 2002 CE and during the 1980s CE are identified in the 210Pb‐ and 14C‐dated sediments. These events have the same sedimentary signature as 12 earlier events throughout the Holocene interpreted to represent previous GLOFs in the catchment. The GLOFs are interpreted to have occurred during periods when the glacier extent was similar to the modern positions, and the events are thus used to pinpoint past positions of the glacier terminus and, hence, the equilibrium line altitudes (ELAs). The results indicate that the glacier Svartenutbreen, located at the eastern part of Folgefonna, had a similar size in 2002 CE as c. 8200–8300 cal. a BP, corresponding to the 8.2 ka event in the North Atlantic region. The regrowth of Sørfonna after the Holocene Thermal Optimum occurred at c. 6900 cal. a BP and Svartenutbreen was at modern size and extent in the periods c. 6400, c. 5450, c. 4850, c. 3850, c. 3550 and c. 1650 cal. a BP. Since 1650 cal. a BP, we infer that the glacier was larger than the 2002 CE glacier extent until 1910 CE when a GLOF occurred. Svartenutbreen has been retreating since 1910 CE, which led to the ice damming of the two historical GLOFs in the 1980s and 2002 CE separated by a glacier advance in the 1990s CE. The findings are discussed and compared to other regional glacier reconstructions in Norway, and emphasize the value of identifying and utilizing GLOFs as an indicator of past ELA variability.  相似文献   
313.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
314.
The transition from the last glacial and beginning of Bølling–Allerød and Pre‐Boreal periods in particular is marked by rapid increases in atmospheric methane (CH4) concentrations. The CH4 concentrations reached during these intervals, ~650–750 ppb, is twice that at the last glacial maximum and is not exceeded until the onset of industrialization at the end of the Holocene. Periods of rapid sea‐level rise as the Last Glacial Maximum ice sheets retreated and associated with ‘melt‐water pulses’ appear to coincide with the onset of elevated concentrations of CH4, suggestive of a potential causative link. Here we identify and outline a mechanism involving the flooding of the continental shelves that were exposed and vegetated during the glacial sea‐level low stand and that can help account for some of these observations. Specifically, we hypothesize that waterlogging (and later, flooding) of large tracts of forest and savanna in the Tropics and Subtropics during the deglacial transition and early Holocene would have resulted in rapid anaerobic decomposition of standing biomass and emission of methane to the atmosphere. This novel mechanism, akin to the consequences of filling new hydroelectric reservoirs, provides a mechanistic explanation for the apparent synchronicity between rate of sea‐level rise and occurrence of elevated concentrations of ice core CH4. However, shelf flooding and the creation of transient wetlands are unlikely to explain more than ~60 ppb of the increase in atmospheric CH4 during the deglacial transition, requiring additional mechanisms to explain the bulk of the glacial to interglacial increase. Similarly, this mechanism has the potential also to play some role in the rapid changes in atmospheric methane associated with the Dansgaard–Oeschger cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
315.
Abstract

Large outcrop areas in the Canning Desert and the Fitzroy Valley of northwestern Australia consist of marine Jurassic and Upper Triassic rocks, not of Permian as formerly believed. On present knowledge, outcrops of the Triassic formations are restricted to parts of the Fitzroy and Bonaparte Gulf Basins, whereas the distribution of Jurassic (Kimmeridgian to Tithonian) rocks provides evidence for a major marine invasion that affected the Canning Desert area and may have advanced into the centre of the Australian continent and beyond. The late Jurassic transgression did not enter the Fitzroy Basin area.

From the distribution and nature of the Mesozoic formations it is concluded that the main phase of post-Permian folding in the Fitzroy Basin is early Triassic. Later movements affected minor northern parts of the Canning Desert area in early Jurassic and in early Cretaceous time.

As an alternative working hypothesis to the traditional basin concept it is suggested that during the Mesozoic the Canning Desert area was an epicontinental shelf platform.  相似文献   
316.
ABSTRACT

Lateral subsurface flow within a 10% forested slope in a part of the humid tropics of southwestern Nigeria during 1982 is described with particular regard to the cumulative amount, timing and frequency of seepage, the relative contributions of the various soil horizons to the total seepage, and factors affecting these seepage parameters. Seepage was collected at 30, 500, 900, 1200 and 1800 mm depths by means of troughs connected to plastic collectors, and measurements were made between March and November 1982. The total amount of seepage during the study year was 67.7 mm and this was obtained from a total of 29 seepage days. This is considered low given the number of rainy days (106), the total rainfall for this period (924 mm) and results from other environments. The impeding layer in the soil is within the 900–1200 mm horizon, but the largest relative contribution to total seepage was not from the horizon immediately above this layer (i.e. 500–900 mm), but from the surface 0–30 mm horizon. Soil moisture status and hydraulic conductivity as influenced by the rainfall pattern were found to be very important in controlling the seepage patterns.  相似文献   
317.
318.
319.
We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号