首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   14篇
地质学   36篇
海洋学   13篇
天文学   14篇
综合类   2篇
自然地理   6篇
  2022年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2014年   5篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有101条查询结果,搜索用时 0 毫秒
101.
When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may, in principle, be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depend on the initial conditions, for the one-parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as   N 1/3  , a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the   N  →∞  limit) is assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to   N 1/3  , while the fraction of the initial mass ejected grows only very slowly with N , approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time-dependent potential of an already re-expanding central core. Using modified initial configurations, we explore the importance of fluctuations at different scales and discreteness (i.e. non-Vlasov) effects in the dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号