首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2491篇
  免费   177篇
  国内免费   14篇
测绘学   87篇
大气科学   251篇
地球物理   774篇
地质学   906篇
海洋学   211篇
天文学   268篇
综合类   27篇
自然地理   158篇
  2023年   9篇
  2022年   20篇
  2021年   59篇
  2020年   59篇
  2019年   52篇
  2018年   103篇
  2017年   108篇
  2016年   174篇
  2015年   133篇
  2014年   149篇
  2013年   224篇
  2012年   171篇
  2011年   170篇
  2010年   144篇
  2009年   129篇
  2008年   106篇
  2007年   86篇
  2006年   103篇
  2005年   56篇
  2004年   56篇
  2003年   53篇
  2002年   63篇
  2001年   36篇
  2000年   23篇
  1999年   29篇
  1998年   24篇
  1997年   28篇
  1996年   17篇
  1995年   26篇
  1994年   18篇
  1993年   11篇
  1992年   8篇
  1991年   23篇
  1990年   13篇
  1989年   13篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   16篇
  1983年   12篇
  1982年   12篇
  1981年   7篇
  1980年   6篇
  1979年   16篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   12篇
  1969年   7篇
排序方式: 共有2682条查询结果,搜索用时 15 毫秒
51.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   
52.
An expression for the vertical equilibrium concentration profile of heavy particles, including the effects of canopy on the eddy diffusivity as well as corrections for atmospheric stability, is proposed. This expression is validated against measurements of vertical concentration profiles of corn pollen above a corn field. The fitted theoretical profiles show that particle settling is correctly accounted for. The sensitivity to variations in the turbulent Schmidt number, settling velocity and stability corrections are explicitly characterized. The importance of independent measurements of the surface flux of pollen in future experiments is noted.  相似文献   
53.
The surface-layer flux-profile formulae of Louis (1979), used in many atmospheric models, are modified in a simple way to allow for different values of the roughness lengths for heat and momentum. The modified set of formulae simplifies the calculation of surface-layer fluxes over most natural land surfaces, where the roughness length for momentum can be almost an order of magnitude greater than that for heat.  相似文献   
54.
Surface temperature, precipitation, specific humidity and wind anomalies associated with the warm and cold phases of ENSO simulated by WRF and HadRM are examined for the present and future decades. WRF is driven by ECHAM5 and CCSM3, respectively, and HadRM is driven by HadCM3. For the current decades, all simulations show some capability in resolving the observed warm-dry and cool-wet teleconnection patterns over the PNW and the Southwest U.S. for warm and cold ENSO. Differences in the regional simulations originate primarily from the respective driving fields. For the future decades, the warm-dry and cool-wet teleconnection patterns in association with ENSO are still represented in ECHAM5-WRF and HadRM. However, there are indications of changes in the ENSO teleconnection patterns for CCSM3-WRF in the future, with wet anomalies dominating in the PNW and the Southwest U.S. for both warm and cold ENSO, in contrast to the canonical patterns of precipitation anomalies. Interaction of anomalous wind flow with local terrain plays a critical role in the generation of anomalous precipitation over the western U.S. Anomalous dry conditions are always associated with anomalous airflow that runs parallel to local mountains and wet conditions with airflow that runs perpendicular to local mountains. Future changes in temperature and precipitation associated with the ENSO events in the regional simulations indicate varying responses depending on the variables examined as well as depending on the phase of ENSO.  相似文献   
55.
Surface displacements and gravity changes due to volcanic sources are influenced by medium properties. We investigate topographic, elastic and self-gravitation interaction in order to outline the major factors that are significant in data modelling. While elastic-gravitational models can provide a suitable approximation to problems of volcanic loading in areas where topographic relief is negligible, for prominent volcanoes the rough topography could affect deformation and gravity changes to a greater extent than self-gravitation. This fact requires the selection, depending on local relief, of a suitable model for use in the interpretation of surface precursors of volcanic activity. We use the three-dimensional Indirect Boundary Element Method to examine the effects of topography on deformation and gravity changes in models of magma chamber inflation/deflation. Topography has a significant effect on predicted surface deformation and gravity changes. Both the magnitude and pattern of the geodetic signals are significantly different compared to half-space solutions. Thus, failure to account for topographic effects in areas of prominent relief can bias the estimate of volcanic source parameters, since the magnitude and pattern of deformation and gravity changes depend on such effects.  相似文献   
56.
Ocean convection in the Antarctic has been studied many times and has been revealed to be responsible for ice-cover reduction. In the Arctic, proof of that phenomenon has not been documented. It is believed that this phenomenon happens on a smaller scale in the Arctic when local circulation of deep warmer water melts and slows ice production. An example of this is the North Water (NOW) polynya in northern Baffin Bay. A polynya is an area of open water in an otherwise ice-covered area. As ice forms under the fast ice near the boundary of the polynya, ocean salts (brine) are ejected from the newly formed ice. This water, which has an increased concentration of salt, sinks and is replaced by warmer water from below, and this slows ice formation. In our study a coupled one-dimensional thermodynamic snow–fast ice model incorporating ocean heat flux input via a shallow convection model was used. Ice thickness was calculated using a thermodynamic model that included a current-induced entrainment model and a convection model to account for brine rejection during ice growth. Atmospheric observations from Grise Fiord and Thule and ocean profiles around the NOW polynya near these sites were used as input to the model. This purely thermodynamic study enables us to obtain ice thickness values that can be compared with qualitative observations. This modelling study compares two sites related to the NOW polynya. The results indicate that the shallow convection model simulates the reduction of fast ice near Thule but not near Grise Fiord.  相似文献   
57.
Five deterministic methods of spatial interpolation of monthly rainfall were compared over the state of Rio de Janeiro, southeast Brazil. The methods were the inverse distance weight (IDW), nearest neighbor (NRN), triangulation with linear interpolation (TLI), natural neighbor (NN), and spline tension (SPT). A set of 110 weather stations was used to test the methods. The selection of stations had two criteria: time series longer than 20 years and period of data from 1960 to 2009. The methods were evaluated using cross-validation, linear regression between values observed and interpolated, root mean square error (RMSE), coefficient of determination (r 2), coefficient of variation (CV, %), and the Willmott index of agreement (d). The results from different methods are influenced by the meteorological systems and their seasonality, as well as by the interaction with the topography. The methods presented higher precision (r 2) and accuracy (d, RMSE) during the summer and transition to autumn, in comparison with the winter or spring months. The SPT had the highest precision and accuracy in relation to other methods, in addition to having a good representation of the spatial patterns expected for rainfall over the complex terrain of the state and its high spatial variability.  相似文献   
58.
Bottom-up and top-down models are used to support climate policies, to identify the options required to meet GHG abatement targets and to evaluate their economic impact. Some studies have shown that the GHG mitigation options provided by economic top-down and technological bottom-up models tend to vary. One reason for this is that these models tend to use different baseline scenarios. The bottom-up TIMES_PT and the top-down computable general equilibrium GEM-E3_PT models are examined using a common baseline scenario to calibrate them, and the extend of their different mitigation options and its relevant to domestic policy making are assessed. Three low-carbon scenarios for Portugal until 2050 are generated, each with different GHG reduction targets. Both models suggest close mitigation options and locate the largest mitigation potential to energy supply. However, the models suggest different mitigation options for the end-use sectors: GEM-E3_PT focuses more on energy efficiency, while TIMES_PT relies on decrease carbon intensity due to a shift to electricity. Although a common baseline scenario cannot be ignored, the models’ inherent characteristics are the main factor for the different outcomes, thereby highlighting different mitigation options.

Policy relevance

The relevance of modelling tools used to support the design of domestic climate policies is assessed by evaluating the mitigation options suggested by a bottom-up and a top-down model. The different outcomes of each model are significant for climate policy design since each suggest different mitigation options like end-use energy efficiency and the promotion of low-carbon technologies. Policy makers should carefully select the modelling tool used to support their policies. The specific modelling structures of each model make them more appropriate to address certain policy questions than others. Using both modelling approaches for policy support can therefore bring added value and result in more robust climate policy design. Although the results are specific for Portugal, the insights provided by the analysis of both models can be extended to, and used in the climate policy decisions of, other countries.  相似文献   
59.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   
60.
This work examines the relevance of the inclusion of ground-based gravity data in the calibration process of a global rainfall-discharge reservoir model. The analysis is performed for the Durzon karst system (Larzac, France). The first part of the study focuses on the hydrological interpretation of the ground-based gravity measurements. The second part of the study investigates further the information content of the gravity data with respect to water storage dynamics modelling. The gravity-derived information is found unable to either reduce equifinality of the single-objective, discharge-based model calibration process or enhance model performance through assimilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号