首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   40篇
  国内免费   3篇
测绘学   35篇
大气科学   51篇
地球物理   170篇
地质学   237篇
海洋学   63篇
天文学   109篇
综合类   2篇
自然地理   59篇
  2024年   3篇
  2022年   3篇
  2021年   6篇
  2020年   10篇
  2019年   11篇
  2018年   19篇
  2017年   20篇
  2016年   19篇
  2015年   13篇
  2014年   23篇
  2013年   39篇
  2012年   30篇
  2011年   37篇
  2010年   33篇
  2009年   42篇
  2008年   49篇
  2007年   44篇
  2006年   34篇
  2005年   26篇
  2004年   31篇
  2003年   33篇
  2002年   26篇
  2001年   18篇
  2000年   17篇
  1999年   13篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   5篇
  1993年   10篇
  1992年   5篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1971年   2篇
排序方式: 共有726条查询结果,搜索用时 31 毫秒
181.
182.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   
183.
184.
185.
A. J. Robson  C. Neal 《水文研究》1996,10(2):183-203
Ten years of detailed upland stream and bulk deposition water quality data from Plynlimon, mid-Wales, are examined for trend. A robust statistical test (the seasonal Kendall test) is applied and data are presented graphically. Smoothing techniques are used to highlight the patterns of change which underlie high data scatter. The graphs show long-term cycles within the data which violate the assumptions of common statistical tests for trend. These cycles relate to fluctuations in the weather patterns at Plynlimon. Even though the seasonal Kendall test is significant for some determinands, the evidence from the graphs suggests that many of these ‘trends’ are unlikely to continue. For solutes in rainfall, there is no convincing long-term trend. There is a possible increase in ammonium concentrations, which may indicate an increasing atmospheric source generated by farming activities, but this will require a longer data series for confirmation. Several trace metal concentrations increased significantly part way through the study period, but later returned to the original levels. The bulk precipitation sea salt input has been uneven over the 10-year sampling period, with the highest inputs occurring during the wetter winters. For solutes in streamwaters, there are clear trends in dissolved organic carbon (DOC), iodine and bromide, which increase over time and may be attributed to an increase in organic decomposition in the catchment. Previous studies in Wales have shown similar behaviour for colour, which is related to DOC, but the corresponding changes for bromide and iodine are new. For most other streamwater determinands, any changes are masked by the effects of year to year variations in the quality and quantity of rainfall. For example, zinc and chromium variations parallel the corresponding rainfall quantity variations. The effect of rainfall quality variation is marked for marine-derived elements such as chloride. For sulphate, streamwater variations are inverted relative to chloride. This suggests that dry deposition may vary with weather conditions: high when the wind direction is from the land and low when weather systems are predominantly frontal and laden with sea salts. Alternatively, high sea salt rainfall may be affecting absorption/solubility reactions in the soils. There are four main conclusions. Firstly, there is no indication of changing acid deposition inputs or changing acidity within the runoff, despite a decline in UK sulphur dioxide emissions. Secondly, streamwater DOC has shown an increase over time, but there is no clear corresponding decrease in pH as might be expected from acidification theory. Thirdly, there are cyclical variations in bulk precipitation inputs and in streamwater quality, which mean that trends cannot be established even with 10 years of data. Long-term cycles are likely to exist in other environmental data and extreme care is required for the interpretation of trend, especially if data sets are short. This aspect strongly supports the continuation of long-term monitoring programmes over several decades. Finally, the graphical application strongly enhances data analysis and should be considered an essential component of trend investigation.  相似文献   
186.
Soil‐mantled pole‐facing hillslopes on Earth tend to be steeper, wetter, and have more vegetation cover compared with adjacent equator‐facing hillslopes. These and other slope aspect controls are often the consequence of feedbacks among hydrologic, ecologic, pedogenic, and geomorphic processes triggered by spatial variations in mean annual insolation. In this paper we review the state of knowledge on slope aspect controls of Critical Zone (CZ) processes using the latitudinal and elevational dependence of topographic asymmetry as a motivating observation. At relatively low latitudes and elevations, pole‐facing hillslopes tend to be steeper. At higher latitudes and elevations this pattern reverses. We reproduce this pattern using an empirical model based on parsimonious functions of latitude, an aridity index, mean‐annual temperature, and slope gradient. Using this empirical model and the literature as guides, we present a conceptual model for the slope‐aspect‐driven CZ feedbacks that generate asymmetry in water‐limited and temperature‐limited end‐member cases. In this conceptual model the dominant factor driving slope aspect differences at relatively low latitudes and elevations is the difference in mean‐annual soil moisture. The dominant factor at higher latitudes and elevations is temperature limitation on vegetation growth. In water‐limited cases, we propose that higher mean‐annual soil moisture on pole‐facing hillslopes drives higher soil production rates, higher water storage potential, more vegetation cover, faster dust deposition, and lower erosional efficiency in a positive feedback. At higher latitudes and elevations, pole‐facing hillslopes tend to have less vegetation cover, greater erosional efficiency, and gentler slopes, thus reversing the pattern of asymmetry found at lower latitudes and elevations. Our conceptual model emphasizes the linkages among short‐ and long‐timescale processes and across CZ sub‐disciplines; it also points to opportunities to further understand how CZ processes interact. We also demonstrate the importance of paleoclimatic conditions and non‐climatic factors in influencing slope aspect variations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
187.
Erosion of cohesive soils in fluvial environments is dependent on physical, geochemical and biological properties, which govern inter‐particle attraction forces and control detachment rates from stream beds and banks. Most erosion rate models are based on the excess shear stress equation where the soil erodibility coefficient (kd) is multiplied by the difference between the boundary hydraulic shear stress (τb) and the soil critical shear stress (τc). Both kd and τc are a function of soil properties and must be obtained through in situ field or laboratory testing. Many studies have generated predictive relationships for kd and τc derived from various soil properties. These studies typically were conducted in watersheds within a single physiographic region with a common surficial geology and/or investigated a limited number of soil properties, particularly geochemical properties. With widely reported differences in relationships between τc and soil properties, this study investigated differences in predictive relationships for τc among different physiographic provinces in Tennessee, USA. Erodibility parameters were determined in the field using a mini‐jet test device. Among these provinces, statistically four unique clusters were identified from a dataset of 128 observations and these data clusters were used to develop predictive models for τc to identify dominant properties governing erosion. In these clusters, 16 significant physical and geochemical soil properties were identified for τc prediction. Among these soil properties, water content and passing #200 sieve (percentage soil less than 75 μm) were the dominant controlling parameters to predict τc in addition to clay percentage (< 2 μm), bulk density, and soil pore water chemistry. This study suggests that unique relationships exist for physiographic provinces that are likely due to soil physical‐geochemical processes associated with surficial geology that determine minerology of the cohesive soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
188.
Hillslope asymmetry, i.e. variation in hillslope form as a function of slope aspect and/or mean solar insolation, has been documented in many climates and geologic contexts. Such patterns have the potential to help us better understand the hydrologic, ecologic, and geomorphologic processes and feedbacks operating on hillslopes. Here we document asymmetry in the fraction of hillslope relief accommodated by cliffs in weathering‐limited hillslopes of drainage basins incised into the East Kaibab Monocline (northern Arizona) and Raplee Ridge Monocline (southern Utah) of the southern Colorado Plateau. We document that south‐ and west‐facing hillslopes have a larger proportion of hillslope relief accommodated by cliffs compared with north‐ and east‐facing hillslopes. Cliff abundance correlates positively with mean solar insolation and, by inference, negatively with soil/rock moisture. Solar insolation control of hillslope asymmetry is an incomplete explanation, however, because it cannot account for the fact that the greatest asymmetry occurs between southwest‐ and northeast‐facing hillslopes rather than between south‐ and north‐facing hillslopes in the study sites. Modeling results suggest that southwest‐facing hillslopes are more cliff‐dominated than southeast‐facing hillslopes of the same mean solar insolation in part because potential evapotranspiration rates, which control the soil/rock moisture that drives weathering, are controlled by the product of solar insolation and a nonlinear function of surface temperature, together with the fact that southwest‐facing hillslopes receive peak solar insolation during warmer times of day compared with southeast‐facing hillslopes. The dependence of water availability on both solar insolation and surface temperature highlights the importance of the diurnal cycle in controlling water availability, and it provides a general explanation for the fact that vegetation cover tends to exhibit the greatest difference between northeast‐ and southwest‐facing hillslopes in the Northern Hemisphere and between southeast‐ and northwest‐facing hillslopes in the Southern Hemisphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
189.
Structure‐from‐motion (SfM) photogrammetry is revolutionising the collection of detailed topographic data, but insight into geomorphological processes is currently restricted by our limited understanding of SfM survey uncertainties. Here, we present an approach that, for the first time, specifically accounts for the spatially variable precision inherent to photo‐based surveys, and enables confidence‐bounded quantification of 3D topographic change. The method uses novel 3D precision maps that describe the 3D photogrammetric and georeferencing uncertainty, and determines change through an adapted state‐of‐the‐art fully 3D point‐cloud comparison (M3C2), which is particularly valuable for complex topography. We introduce this method by: (1) using simulated UAV surveys, processed in photogrammetric software, to illustrate the spatial variability of precision and the relative influences of photogrammetric (e.g. image network geometry, tie point quality) and georeferencing (e.g. control measurement) considerations; (2) we then present a new Monte Carlo procedure for deriving this information using standard SfM software and integrate it into confidence‐bounded change detection; before (3) demonstrating geomorphological application in which we use benchmark TLS data for validation and then estimate sediment budgets through differencing annual SfM surveys of an eroding badland. We show how 3D precision maps enable more probable erosion patterns to be identified than existing analyses, and how a similar overall survey precision could have been achieved with direct survey georeferencing for camera position data with precision half as good as the GCPs'. Where precision is limited by weak georeferencing (e.g. camera positions with multi‐metre precision, such as from a consumer UAV), then overall survey precision can scale as n½ of the control precision (n = number of images). Our method also provides variance–covariance information for all parameters. Thus, we now open the door for SfM practitioners to use the comprehensive analyses that have underpinned rigorous photogrammetric approaches over the last half‐century. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
190.
Unmanned Aerial Systems (UASs) have the potential to provide multi-view data, but the approaches used to extract the multi-view data from UAS and investigation of their use in image classification are currently unavailable in publications to our best knowledge. This study presents a method that combines collinearity equations and a two-phase optimization procedure to automatically project a point from real world coordinate system of an orthoimage to UAS image coordinate system (row and column numbers) to be used in multi-view data extraction. The results show average errors for the computed UAS column and row numbers were 1.6 and 1.8 pixels respectively evaluated with leave-one-out method. Based on this algorithm, it’s also for the first time that object-based multi-view data were extracted and presented, and the potential of using the multi-view data to aid Geographic Object-Based Image Analysis(GEOBIA) through bidirectional reflectance distribution function (BRDF) modelling was evaluated with two representatives of BRDFs, the Rahman-Pinty-Verstraete(RPV) and Ross-Thick-LiSparse (RTLS). Our results indicate the RPV model tends to overestimate the bidirectional reflectance for land cover types with high reflectance, while perform well for those with relatively low reflectance in our study area. To test the impact of using multi-view data on image classification, we extracted parameters from BRDF models and used these parameters as object features for object-based classification. The 10-fold cross validation results show that the 3-parameter RTLS significantly improved overall accuracy compared to the classifications relying only on the orthoimage features, while other BRDF models did not show significant improvements, raising the needs to develop new methods to better utilize the multi-view information in GEOIBA in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号