首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115323篇
  免费   1716篇
  国内免费   1819篇
测绘学   3518篇
大气科学   8413篇
地球物理   22852篇
地质学   43943篇
海洋学   9169篇
天文学   22165篇
综合类   2354篇
自然地理   6444篇
  2021年   635篇
  2020年   759篇
  2019年   784篇
  2018年   7569篇
  2017年   6872篇
  2016年   5284篇
  2015年   1578篇
  2014年   2056篇
  2013年   4181篇
  2012年   3787篇
  2011年   7004篇
  2010年   6053篇
  2009年   7281篇
  2008年   6140篇
  2007年   6836篇
  2006年   3114篇
  2005年   3013篇
  2004年   3074篇
  2003年   2963篇
  2002年   2584篇
  2001年   1972篇
  2000年   1951篇
  1999年   1685篇
  1998年   1673篇
  1997年   1578篇
  1996年   1376篇
  1995年   1326篇
  1994年   1191篇
  1993年   1057篇
  1992年   1029篇
  1991年   1011篇
  1990年   1073篇
  1989年   921篇
  1988年   868篇
  1987年   1038篇
  1986年   933篇
  1985年   1185篇
  1984年   1348篇
  1983年   1233篇
  1982年   1109篇
  1981年   1116篇
  1980年   980篇
  1979年   906篇
  1978年   921篇
  1977年   833篇
  1976年   792篇
  1975年   788篇
  1974年   752篇
  1973年   780篇
  1972年   473篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
We examine a siphon-like mechanism for moving mass from the chromosphere to a gravitational well at the top of a magnetic loop to form a prominence. The calculations assume no apriori flow velocity at the loop base. Instead heating in the loop legs drives the flow. The prominence formation process requires two steps. First, the background heating rate must be reduced to on the order of 1 % of the initial heating rate required to maintain the coronal loop. This forms an initial condensation at the top of the loop. Second, the heating must take place only in the loop legs in order to produce a pressure differential which drives mass up into the well at the top of the loop. The heating rate in the loop must be increased once the prominence has begun to form or full prominence densities can not be achieved in a reasonable time. We conclude that this heating driven siphon-like mechanism is feasible for producing and maintaining prominences.  相似文献   
42.
In recent times it has been emphasized that the present kinematical structures of asteroid families should be evolved with respect to the original post-impact situations, according to numerical simulations performed taking into account also the previously neglected Yarkovsky effect. In this paper we show that also a “classical” approach based on an analysis of the current kinematical properties of families leads to conclude that the distributions of proper eccentricities and semimajor axes of family members exhibit evidence of an evolution. The importance of this approach is that it yields a fully independent and quantitative estimate of an evolutionary spreading of the proper elements. In particular, we find that the original post-impact families had to be on the average about twice more compact than the families we observe now, when considering family members down to about 5 km in size. This result can be used in future analyses to derive estimates of the ages of different families, and to better constrain the typical values of the ejection velocities of the fragments in family-forming events.  相似文献   
43.
Abstract— We have analyzed several types of data associated with the well‐documented fall of the Neuschwanstein meteorites on April 6, 2002 (a total of three meteorites have been recovered). This includes ground‐based photographic and radiometer data as well as infrasound and seismic data from this very significant bolide event (Spurný et al. 2002, 2003). We have also used these data to model the entry of Neuschwanstein, including the expected dynamics, energetics, panchromatic luminosity, and associated fragmentation effects. In addition, we have calculated the differential efficiency of acoustical waves for Neuschwanstein and used these values to compare against the efficiency calculated using available ground‐based infrasound data. This new numerical technique has allowed the source height to be determined independent of ray tracing solutions. We have also carried out theoretical ray tracing for a moving point source (not strictly a cylindrical line emission) and for an infinite speed line source. In addition, we have determined the ray turning heights as a function of the source height for both initially upward and downward propagating rays, independent of the explicit ray tracing (detailed propagation path) programs. These results all agree on the origins of the acoustic emission and explicit source heights for Neuschwanstein for the strongest infrasonic signals. Calculated source energies using more than four different independent approaches agree that Neuschwanstein was certainly <500 kg in initial mass, given the initial velocity of 20.95 km/s, resulting in an initial source energy ≤0.0157‐0.0276 kt TNT equivalent (4.185 times 1012 J). Local source energies at the calculated infrasonic/seismic source altitudes are up to two orders of magnitude smaller than this initial source energy.  相似文献   
44.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   
45.
The stability and evolution of cold, shock-bounded slabs is studied using numerical hydrodynamic simulations. We confirm the analysis of Vishniac (1994) [ApJ, 428, 186], who showed that such slabs are unstable if they are perturbed by a displacement larger than their width. The growth rate of this nonlinear thin shell instability (NTSI) is found to increase with decreasing wavelength, in qualitative agreement with Vishniac's analysis. The NTSI saturates when the bending angle becomes large and the growth in the width of the slab pinches off the perturbation. After saturation, the slab remains greatly extended with an average density much less than the original slab density, supported primarily by supersonic turbulence within the slab. Linear perturbations are also found to be unstable in that they can lead to turbulent flow within the slab, although this response to linear perturbations is distinct from, and much less violent than the NTSI.Richard McCray  相似文献   
46.
New determination of the Earth orientation parameters (EOP), based on optical astrometry observations since the beginning of the century, is now under preparation by the Working group established by Commission 19 of the IAU. The Hipparcos catalog is to define the celestial reference frame in which the new series of EOP are to be described, The novelties of the prepared solution are the higher resolution (5 days) and more parameters estimated from the solution (celestial pole offsets, rheological parameters of the Earth, certain instrumental constants). The mathematical model of the solution is described, and the results based on the observations made with 46 instruments at 29 observatories and a preliminary Hipparcos catalog are presented.  相似文献   
47.
Starting with a simple Taylor-based expansion of the inverse of the distance between two bodies, we are able to obtain a series expansion of the disturbing function of the three-body problem (planar elliptic case) which is valid for all points of the phase space outside the immediate vicinity of the collision points. In particular, the expansion is valid for very high values of the eccentricity of the perturbed body. Furthermore, in the case of an interior mean-motion resonant configuration, the above-mentioned expression is easily averaged with respect to the synodic period, yielding once again a global expansion of (R) valid for very high eccentricities.Comparisons between these results and the numerically computed exact function are presented for various resonances and values of the eccentricity. Maximum errors are determined in each case and their origin is established. Lastly, we discuss the applicability of the present expansion to practical problems.  相似文献   
48.
The explicit forms of the metric as well as the equations of motion in the first-order post-Newtonian approximation are worked out under several gauge conditions. It is noted that the so-called EIH (Einstein, Infeld, and Hoffman) equation of motion for an assembly ofN finite mass points mutually interacting via gravitation is identically obtained under three different gauge conditions, namely the harmonic gauge, Chandrasekhar gauge and a composite Chandrasekhar gauge used by Misneret al. (1970), even though the solutions for the metric are found to be all different. In one case the metric has a component apparently diverging, but finally generates regular affine connections so that the equations of motions become free from any singularity. By use of the Chandrasekhar gauge and his formulation, the second-order contribution to the acceleration of planets in the limit of test particle motion around the Sun has been calculated, the inclusion of which in the EIH set of the equations of motion would extend the relative accuracy of computing the total acceleration of any planet to better than one part in 1017.  相似文献   
49.
The results of photometric observations of comet/asteroid 2060 Chiron at the Observatório do Pico dos Dias (Brazil-OPD) and the Observatoire de Haute-Provence (France-OHP) during 1994 and 1995 are presented. The analysis of the data shows a decrease of 2060 Chiron brightness from its peak values of 1988–1991. The absolute magnitude, Hv, varies from a maximum of 6.6 in February 1994 up to a minimum of 6.8 in June 1995. Therefore 2060 Chiron is back to a minimum of activity close to that of 1983–1985. The slope parameter G is found to be G = 0.71 ± 0.15. It is suggested that the H-G magnitude system, generally adopted to present 2060 Chiron brightness, is not the most appropriate due to the cometary activity of this object.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号