首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   66篇
  国内免费   15篇
测绘学   44篇
大气科学   143篇
地球物理   414篇
地质学   586篇
海洋学   237篇
天文学   176篇
综合类   4篇
自然地理   86篇
  2023年   6篇
  2022年   22篇
  2021年   40篇
  2020年   45篇
  2019年   33篇
  2018年   73篇
  2017年   54篇
  2016年   107篇
  2015年   72篇
  2014年   57篇
  2013年   110篇
  2012年   90篇
  2011年   99篇
  2010年   104篇
  2009年   95篇
  2008年   118篇
  2007年   73篇
  2006年   77篇
  2005年   48篇
  2004年   56篇
  2003年   44篇
  2002年   26篇
  2001年   19篇
  2000年   25篇
  1999年   18篇
  1998年   19篇
  1997年   12篇
  1996年   12篇
  1995年   13篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   4篇
  1979年   4篇
  1977年   5篇
  1975年   5篇
  1972年   3篇
  1957年   2篇
  1956年   3篇
  1954年   2篇
排序方式: 共有1690条查询结果,搜索用时 15 毫秒
1.
2.
The subsurface geometry of the Sebastián Vizcaíno Basin is obtained from the 2D inversion of gravity data, constrained by a density-versus-depth relationship derived from an oil exploration deep hole. The basin accumulated a thick pile of marine sediments that evolved in the fore-arc region of the compressive margin prevalent along western North America during Mesozoic and Tertiary times. Our interpretation indicates that the sedimentary infill in the Sebastián Vizcaíno Basin reaches a maximum thickness of about 4 km at the centre of a relatively symmetric basin. At the location of the Suaro-1 hole, the depth to the basement derived from this work agrees with the drilled interface between calcareous and volcaniclastic members of the Alisitos Formation. A sensitivity analysis strongly suggests that the assumed density function leads to a nearly unique solution of the inverse problem.  相似文献   
3.
The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.  相似文献   
4.
5.
An overview of radiophysical investigations of the lunar soil and plasma shell by active radar detection with the use of spacecraft is presented. The possibility is analyzed of conducting bistatic measurements using the Irkutsk Incoherent Scattering Radar and the onboard radar system RLK-L which is being developed for the orbital station of the Luna-Resurs mission.  相似文献   
6.
Summary Atmospheric variability in outgoing long-wave radiation (OLR) and tropospheric relative vorticity (VOR) over the South American region was studied from 1979 to 1996 using the complex Morlet wavelet function. The analyses focus on spatial variation in intraseasonal and submonthly scales. Scalograms were used to measure submonthly intraseasonal oscillations in convection, which were found to be predominant in the tropical regions. However, 7-day and 15-day oscillations were observed at tropical and extratropical latitudes in spring and winter, indicating that transient disturbances play a more prominent role. Regarding VOR, tropical energy intensities were highest in the spring and summer, whereas subtropical and extratropical energy intensities were highest in the autumn and winter. The dynamics of the 25-day and 45-day VOR oscillations indicates a possible correlation with Rossby waves over the eastern tropical Pacific Ocean, mainly during the summer. During winter, the 7-day and 15-day VOR oscillations are more frequent at higher latitudes and are enhanced along storm tracks. It was also observed that convection amplitudes in the regions of maximum intensity change appreciably from year to year and from season to season, showing that the behavior of the submonthly and intraseasonal oscillations is nonperiodic and correlates strongly with El Ni?o/Southern Oscillation years. These results confirm the efficiency of wavelet analysis for time-scale studies of atmospheric variability.  相似文献   
7.
We investigate the damping of longitudinal (i.e., slow or acoustic) waves in nonisothermal, hot (T≥ 5.0 MK), gravitationally stratified coronal loops. Motivated by SOHO/SUMER and Yohkoh/SXT observations, and by taking into account a range of dissipative mechanisms such as thermal conduction, compressive viscosity, radiative cooling, and heating, the nonlinear governing equations of one-dimensional hydrodynamics are solved numerically for standing-wave oscillations along a magnetic field line. A semicircular shape is chosen to represent the geometry of the coronal loop. It was found that the decay time of standing waves decreases with the increase of the initial temperature, and the periods of oscillations are affected by the different initial footpoint temperatures and loop lengths studied by the numerical experiments. In general, the period of oscillation of standing waves increases and the damping time decreases when the parameter that characterises the temperature at the apex of the loop increases for a fixed footpoint temperature and loop length. A relatively simple second-order scaling polynomial between the damping time and the parameter determining the apex temperature is found. This scaling relation is proposed to be tested observationally. Because of the lack of a larger, statistically relevant number of observational studies of the damping of longitudinal (slow) standing oscillations, it can only be concluded that the numerically predicted decay times are well within the range of values inferred from Doppler shifts observed by SUMER in hot coronal loops.  相似文献   
8.
9.
We discuss MAXIPOL, a bolometric balloon-borne experiment designed to measure the E-mode polarization anisotropy of the cosmic microwave background radiation (CMB) on angular scales of 10 to 2°. MAXIPOL is the first CMB experiment to collect data with a polarimeter that utilizes a rotating half-wave plate and fixed wire-grid polarizer. We present the instrument design, elaborate on the polarimeter strategy and show the instrument performance during flight with some time domain data. Our primary dataset was collected during a 26 h turnaround flight that was launched from the National Scientific Ballooning Facility in Ft. Sumner, New Mexico in May 2003. During this flight five regions of the sky were mapped. Data analysis is in progress.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号