首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   26篇
  国内免费   5篇
测绘学   41篇
大气科学   49篇
地球物理   178篇
地质学   179篇
海洋学   26篇
天文学   56篇
综合类   3篇
自然地理   49篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   7篇
  2020年   15篇
  2019年   10篇
  2018年   16篇
  2017年   14篇
  2016年   24篇
  2015年   20篇
  2014年   20篇
  2013年   37篇
  2012年   30篇
  2011年   27篇
  2010年   22篇
  2009年   41篇
  2008年   24篇
  2007年   29篇
  2006年   25篇
  2005年   20篇
  2004年   18篇
  2003年   18篇
  2002年   15篇
  2001年   16篇
  2000年   9篇
  1999年   9篇
  1998年   12篇
  1997年   15篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有581条查询结果,搜索用时 946 毫秒
341.
The distributions of permeability and porosity are key factors that control airflow and gas phase transport in unsaturated formations. To understand the behavior of flow and transport in such formations, characterization procedure is a typical approach that has been widely applied to laboratories and fields. As is recognized by most investigations, this approach relies on accurate measurements, and more importantly, an adequate tool to interpret those measurements from experiments. This study presents a pneumatic inverse model that is capable to estimate the distributions of permeability (k) and porosity () with high resolution in heterogeneous unsaturated formations. Based on the concept of sequential successive linear estimator (SSLE), the developed model accounts for compressibility and density of air and estimates the geologic parameters using air pressure measurements from sequential cross-hole pneumatic pumping or injection tests. Four synthetic examples, including a one-dimensional well-posed, a horizontally two-dimensional, and two three-dimensional problems, are used to evaluate the developed model in estimating the distributions of permeability and porosity in unsaturated formations. Results of the numerical experiments are promising. The developed pneumatic inverse model can reconstruct the property (i.e., permeability and porosity) fields if the well-defined conditions are met. With a relatively small number of available measurements, the proposed model can accurately capture the patterns and the magnitudes of estimated properties for unsaturated formations. Results of two complex three-dimensional examples show that the proposed model can map the fracture connectivity using a small number of subsurface pressure measurements and estimate k and in shallow soil layers using spatial variations of barometric pressure.  相似文献   
342.
Runoff and sediment lost due to water erosion were recorded for 36 (1 m2) plots with varying types of vegetative cover located on sloping gypsiferous fields in the South of Madrid. 75% of the events had maximum 30‐minute intensity (I30) less than 10 mm h?1 in the period studied (1994–2005). As for the vegetative cover, maximum correlation between runoff and soil loss was found in the least protected plots (0–40% cover) during the most intense rainfall events; however, a significant positive correlation was also observed in plots with greater coverage (40–60%). If coverage exceeded 60%, rainfall erosivity declined. The average amount of sediment produced in high‐intensity events was significantly greater (approximately 7 g m?2 per I30 event >10 mm h?1) than that produced in the rest of the moderate‐intensity events (approximately 3 g m?2 per I30 event <10 mm h?1), but due to the high rate of occurrence of the latter throughout the year sediment loss during the period studied totaled 128 g m?2. By comparison, only 40 g m?2 was produced by the I30 events greater than 10 mm h?1. Even though the amount of soil lost is relatively insignificant from a quantitative standpoint, the organic matter content lost in the sediment (six times more than in the soil) is a permanent loss that threatens the development of the surface of the soil in this area when the vegetative cover is less than 40%. The soil here experiences a chronic loss of 0·02 mm annually as a consequence of frequent, moderate events, in addition to any loss produced by extraordinary events, which, though less frequent, are much more erosive. If moderate events are ignored, an important part of soil loss will be lost in the long run. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
343.
The erosion of rock‐bedded channels generally is considered a slow process caused mainly by abrasion due to bedload or suspended sediments, but the mechanisms of rapid erosion remain unclear. Cavitation is a clear‐fluid erosive process, well known for its effect on engineering structures, when water vapour bubbles collapse and the resultant pressure shocks erode the boundary. However, although the occurrence of cavitation erosion in natural watercourses has long been a matter of debate, as yet there are no incontrovertible examples of cavitation damage to natural river beds. Using flume experiments, we show for the first time that only weakly‐cavitating clear‐water flows can occur for the range of flow velocities observed in rivers, and these do not erode medium‐hardness rocks after 68 hours. During this time period, only a very soft rock featured erosional marks due to dissolution. Thus, our results cast significant doubt on the likelihood of identifying cavitation damage in most rivers, and provide pointers to those river systems that might be investigated further to identify cavitation erosion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
344.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   
345.
It is well established that digital elevation models (DEMs) derived from unmanned aerial vehicle (UAV) images and processed by structure from motion may contain important systematic vertical errors arising from limitations in camera geometry modelling. Even when significant, such ‘dome’-shaped errors can often remain unnoticed unless specific checks are conducted. Previous methods used to reduce these errors have involved: the addition of convergent images to supplement traditional vertical datasets, the usage of a higher number of ground control points, precise direct georeferencing techniques (RTK/PPK) or more refined camera pre-calibration. This study confirms that specific UAV flight designs can significantly reduce dome errors, particularly those that have a higher number of tie points connecting distant images, and hence contribute to a strengthened photogrammetric network. A total of 22 flight designs were tested, including vertical, convergent, point of interest (POI), multiscale and mixed imagery. Flights were carried out over a 300 × 70 m2 flat test field area, where 143 ground points were accurately established. Three different UAVs and two commercial software packages were trialled, totalling 396 different tests. POI flight designs generated the smallest systematic errors. In contrast, vertical flight designs suffered from larger dome errors; unfortunately, a configuration that is ubiquitous and most often used. By using the POI flight design, the accuracy of DEMs will improve without the need to use more ground control or expensive RTK/PPK systems. Over flat terrain, the improvement is especially important in self-calibration projects without (or with just a few) ground control points. Some improvement will also be observed on those projects using camera pre-calibration or with stronger ground control. © 2020 John Wiley & Sons, Ltd.  相似文献   
346.
347.
A first-order moment analysis method is introduced to evaluate the pore-water pressure variability within a hillslope due to spatial variability in saturated hydraulic conductivity (Ks) during rainfall. The influences of the variance of the natural logarithm of Ks(ln Ks), spatial structure anisotropy of ln Ks, and normalized vertical infiltration flux (q) on the evaluations of the pore-water pressure uncertainty are investigated. Results indicate different responses of pressure head variability in the unsaturated region and the saturated region. In the unsaturated region, a larger variance of ln Ks, a higher spatial structure anisotropy, and a smaller q lead to a larger variability in pressure head, while in the saturated region, the variability in pressure head increases with the increase of variance of ln Ks, the decrease of spatial structure anisotropy, or the increase of q. These variables have great impacts on the range of fluctuation of the phreatic surface within the hillslope. The influences of these three variables on the variance of pressure head within the saturated region are greater than those within the unsaturated region, and the variance of ln Ks has the greatest impact. These results yield useful insight into the effects of heterogeneity on pressure head and uncertainty associated with predicted flow field.  相似文献   
348.
It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.  相似文献   
349.
350.
Sequential kriging and cokriging: Two powerful geostatistical approaches   总被引:1,自引:0,他引:1  
A sequential linear estimator is developed in this study to progressively incorporate new or different spatial data sets into the estimation. It begins with a classical linear estimator (i.e., kriging or cokriging) to estimate means conditioned to a given observed data set. When an additional data set becomes available, the sequential estimator improves the previous estimate by using linearly weighted sums of differences between the new data set and previous estimates at sample locations. Like the classical linear estimator, the weights used in the sequential linear estimator are derived from a system of equations that contains covariances and cross-covariances between sample locations and the location where the estimate is to be made. However, the covariances and cross-covariances are conditioned upon the previous data sets. The sequential estimator is shown to produce the best, unbiased linear estimate, and to provide the same estimates and variances as classic simple kriging or cokriging with the simultaneous use of the entire data set. However, by using data sets sequentially, this new algorithm alleviates numerical difficulties associated with the classical kriging or cokriging techniques when a large amount of data are used. It also provides a new way to incorporate additional information into a previous estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号