首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   28篇
  国内免费   14篇
测绘学   12篇
大气科学   57篇
地球物理   94篇
地质学   135篇
海洋学   39篇
天文学   81篇
自然地理   55篇
  2024年   3篇
  2023年   3篇
  2022年   3篇
  2021年   14篇
  2020年   10篇
  2019年   15篇
  2018年   16篇
  2017年   16篇
  2016年   20篇
  2015年   22篇
  2014年   20篇
  2013年   24篇
  2012年   17篇
  2011年   30篇
  2010年   25篇
  2009年   30篇
  2008年   15篇
  2007年   30篇
  2006年   16篇
  2005年   19篇
  2004年   12篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   12篇
  1999年   12篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1969年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
101.
Hyporheic exchange is the interaction of river water and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic exchange has been attributed to the representation of heterogeneous subsurface properties. Our study evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) model errors when choosing between homogeneous and highly complex subsurface parameter structures. We modeled the Steinlach River Test Site in Southwest Germany using a fully coupled surface water-groundwater model to simulate hyporheic exchange and to assess the predictive errors and uncertainties of transit time distributions. A highly parameterized model was built, treated as a “virtual reality” and used as a reference. We found that if the parameter structure is too simple, it will be limited by intrinsic model errors. By increasing subsurface complexity through the addition of zones or heterogeneity, we can begin to exchange intrinsic for epistemic errors. Thus, the appropriate level of detail to represent the subsurface depends on the acceptable range of intrinsic structural errors for the given modeling objectives and the available site data. We found that a zonated model is capable of reproducing the transit time distributions of a more detailed model, but only if the geological structures are known. An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two errors, indicating fitness for practical applications. Parameter fields generated by multiple-point geostatistics (MPS) produce transit time distributions with the largest uncertainties, however, these are reducible by additional hydrogeological data, particularly flux measurements.  相似文献   
102.
Migrated multichannel seismic reflection profiles and bathymetry from a 200 × 120 km area of the Nankai Trough inner slope reveal three physiographic-tectonic domains on the lowermost slope. Linear ridges demarking laterally-continuous hangingwall anticlines above ramps in a relatively simple imbricate stack of trench turbidites characterize the western domain. An imbricate fan underlies a relatively flat structural terrace in the east. Between these two domains lies a compound knoll (Minami Muroto Knoll) some 40 km long, opposite which the thrust front pushes some 10 km further seaward than is the case in the domains to east and west. In the western ‘linear-ridge’ domain previous DSDP drilling penetrated turbiditic trench fill uplifted in the lowermost thrust-fold terrace above a decollement within the underthrusting Shikoku Basin (oceanic plate) sequence. The Shikoku Basin sequence in the western domain is divided into an upper, poorly reflective, hemipelagic claystone unit and a lower, strongly reflective, unit comprising Pliocene turbidites. The lower unit is traceable intact up to c.20 km landward below the lower trench slope and in the better resolved profiles the decollement lies along the base of the claystone unit. A similar decollement within the Shikoku Basin sequence in the eastern domain is traceable up to c.22 km landward. A critical seismic record crossing the western part of Minami-Muroto Knoll shows that the decollement is traceable only 8 km landward to a point, under the steep slope at the front of the knoll, landward of which the subducting Shikoku basin sequence is apparently thickened by as much as twice. This thickening, occuring as it does immediately along-strike from a simple imbricate fan to the east of the knoll and a relatively simple imbricate stack to the west (both evidently involving no strata from the lower Shikoku Basin unit) we ascribe to underplating by formation of duplexes of Shikoku Basin strata. Strike-parallel extension, akin to that postulated for high structural levels in certain thrust belts, is caused by uplift of the knoll as a result either of the underplating, or segmentation of the subducting oceanic crust, or both: a normal fault throws to the west off the west flank of the knoll. It bounds a transverse, trough-like, slope-basin with at least 900 m of fill. Upslope from the knoll broadly slope-parallel normal faults cut, and pond, recent slope sediments. The most impressive is a listric growth fault which dips trenchward. Alternative explanations for these involve extensional collapse of this part of the prism resulting from the subduction of a topographic high, or a zone of selective underplating below the trenchward portion of Minami Murato Knoll.  相似文献   
103.
104.
A novel hand‐held laser‐based stream bed survey system is presented. The system facilitates the capture of detailed 3D mapping of shallow (< 0.7 m) riverbed topography in sections approximately 4 m by 2 m. The system includes a stationary reference system, which projects three laser sheets (two at offset angles), within which a hand‐held monitoring pole is moved. The unique configuration of the light sheets intercepts with the pole as it moves within the survey area providing an exact horizontal location. Pole tilt is compensated for by an inertial measurement unit on the pole, and the height above the bed of the pole and submerged scanning laser are monitored relative to the horizontal laser sheet. Verification and application measurements demonstrate high resolution and accuracy in the horizontal (~5 mm) and vertical (~1 mm) direction. The system can be applied at sites where a free view is blocked and other optical through‐water methods fail. It is appropriate for studies on riverbed statistics and dynamics, which necessitate non‐invasive in‐situ surveys. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
105.
Summary. The method of stochastic inversion, previously applied to secular variation data, is applied to main field data. Adaptations to the method are required: non-linear, as well as linear, data are used; allowance is made for crustal components in the observatory data; and the prior information is specified differently. The requirement that the models should satisfy a finite lower bound on the Ohmic heating in the core provides strong prior information and gives finite error estimates at the core—mantle boundary.
The new method is applied to data from the epochs 1969.5 and 1980.0. The resulting field models are very much more complex than other models, such as the IGRF models extrapolated to the core, and show considerable small-scale detail which, on the basis of the error analysis, can be believed.
The flux integral over the northern hemisphere is computed at each epoch; the difference between the two epochs is approximately one standard deviation, suggesting that the question as to whether the decay of the dipole is consistent with the frozen-flux hypothesis has been resolved in favour of the hypothesis.  相似文献   
106.
The influence of sunlight and dissolved organic carbon (DOC) on the photochemically mediated cycling of hydrogen peroxide (H2O2) was investigated in rainwater samples collected in Wilmington, North Carolina USA. Upon exposure to simulated sunlight 14 of 19 authentic rainwater samples exhibited significant decreases in H2O2. The concentration of hydrogen peroxide did not change significantly in organic-free synthetic rainwater spiked with H2O2 in the light or in dark controls suggesting that the loss was not due to direct photolysis or dark mediated reactions. There was a significant correlation between pseudo-first order rate constants of H2O2 decay and initial H2O2 concentrations. There was also a significant correlation between the rate constant and the abundance of DOC suggesting that rainwater organic carbon plays an important role during photolytic decay either via direct reaction or indirectly through production of peroxide reactive species or scavenging of peroxide generating radicals. Several rain samples exhibited an initial increase in H2O2 during the first 2 h of irradiation. These increases were generally small and most likely do not represent a significant input of peroxide in precipitation. The photo-induced destruction of H2O2 is important because it may partly explain the late afternoon decrease of peroxide concentrations observed in earlier field studies and the substantial under saturation (<10%) of this oxidant in rainwater compared with gas phase concentrations.  相似文献   
107.
108.
109.
This article addresses the need to better understand the complex interactions between climate, human activities, vegetation responses, and surface ozone so that more informed air‐quality policy recommendations can be made. The impacts of intraseasonal climate variations on ozone levels in Tucson, Arizona from April through September of 1995 to 1998 are determined by relating variations in ozone levels to variations in atmospheric conditions and emissions of ozone's precursor chemicals, volatile organic compounds (VOCs) and nitrogen oxides (NOx), and by determining month‐specific atmospheric conditions that are conducive to elevated ozone levels. Results show that the transport of ozone and its precursor chemicals within the Tucson area causes the highest ozone levels to be measured at a downwind monitor. The highest ozone levels occur in August, due in part to the presence of the North American monsoon. Atmospheric conditions conducive to elevated ozone concentrations differ substantially between the arid foresummer (May and June) and the core monsoon months ( July and August). Transport of pollution from Phoenix may have a substantial impact on elevated ozone concentrations during April, May, and June, while El Paso/Ciudad Juarez –derived pollution may contribute significantly to elevated ozone concentrations in August and September. Two broad policy implications derive from this work. Regional pollutant transport, both within the U.S. and between the U.S. and Mexico, is a potential issue that needs to be examined more intensively in future studies. In addition, spatiotemporal variations in sensitivities of ozone production require the adoption of both NOx and VOC control measures to reduce ozone levels in the Tucson area.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号