首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   57篇
  国内免费   13篇
测绘学   21篇
大气科学   100篇
地球物理   152篇
地质学   202篇
海洋学   48篇
天文学   94篇
综合类   1篇
自然地理   67篇
  2022年   5篇
  2021年   22篇
  2020年   19篇
  2019年   16篇
  2018年   20篇
  2017年   25篇
  2016年   55篇
  2015年   33篇
  2014年   30篇
  2013年   48篇
  2012年   52篇
  2011年   38篇
  2010年   43篇
  2009年   51篇
  2008年   33篇
  2007年   30篇
  2006年   34篇
  2005年   26篇
  2004年   21篇
  2003年   14篇
  2002年   6篇
  2001年   13篇
  2000年   13篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有685条查询结果,搜索用时 31 毫秒
291.
292.
293.
294.
295.
The euryhaline polychaete Marenzelleria viridis is a notorious invader of the Baltic region and while many studies have focused on the effects of osmotic stress on larval development of the species, few have assessed its effect on adult specimens. This study investigated the effects of low salinity on the physiology of M. viridis by using its regenerative capacity as a proxy for physiologic performance. Specimens were collected in spring 2015 on sandy flats in Hempstead Bay (Long Island, New York), a site that falls within its native range. Worms were ablated between the 14th and 20th chaetigers and cultured at five different salinity treatments (24psu, 15psu, 10psu, 5psu and 0psu) that reflected the broad salinity regimes of its distributional range. Data for anterior regeneration were analysed and presented. Morphogenesis during anterior regeneration was characterized by the formation of a blastema from which the major anatomic structures emerged. All specimens cultured at 5–24psu successfully completed regeneration whereas 75% of specimens cultured at 0psu died and the survivors were unable to proceed beyond the blastema stage. Salinity did not have an effect on regeneration time (14.5–15.1 days) but did have an effect on the percentage of chaetigers regenerated (lowest – 77% at 5psu, highest – 97.5% at 15‰). The post‐regeneration phase was characterized by variability in pigmentation patterns in the regenerated anterior structures, which appear to be independent of salinity treatments. In conclusion, adult M. viridis appears to exhibit high tolerance to low salinity environments, which may have been inherited from its larval stages. In addition, the different pigmentation patterns observed in regenerated structures may allude to the variability of this feature in spionids.  相似文献   
296.
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.  相似文献   
297.
Pristine tropical forests play a critical role in regional and global climate systems. For a better understanding of the eco-hydrology of tropical “evergreen” vegetation, it is essential to know the partitioning of water into transpiration and evaporation, runoff and associated water ages. For this purpose, we evaluated how topography and vegetation influence water flux and age dynamics at high temporal (hourly) and spatial (10 m) resolution using the Spatially Distributed Tracer-Aided Rainfall-Runoff model for the tropics (STARRtropics). The model was applied in a tropical rainforest catchment (3.2 km2) where data were collected biweekly to monthly and during intensive monitoring campaigns from January 2013 to July 2018. The STARRtropics model was further developed, incorporating an isotope mass balance for evapotranspiration partitioning into transpiration and evaporation. Results exhibited a rapid streamflow response to rainfall inputs (water and isotopes) with limited mixing and a largely time-invariant baseflow isotope composition. Simulated soil water storage showed a transient response to rainfall inputs with a seasonal component directly resembling the streamflow dynamics which was independently evaluated using soil water content measurements. High transpiration fluxes (max 7 mm/day) were linked to lower slope gradients, deeper soils and greater leaf area index. Overall water partitioning resulted in 65% of the actual evapotranspiration being driven by vegetation with high transpiration rates over the drier months compared to the wet season. Time scales of water age were highly variable, ranging from hours to a few years. Stream water ages were conceptualized as a mixture of younger soil water and slightly older, deeper soil water and shallow groundwater with a maximum age of roughly 2 years during drought conditions (722 days). The simulated soil water ages ranged from hours to 162 days and for shallow groundwater up to 1,200 days. Despite the model assumptions, experimental challenges and data limitation, this preliminary spatially distributed model study enhances knowledge about the water ages and overall young water dominance in a tropical rainforest with little influence of deeper and older groundwater.  相似文献   
298.
Hydrologic models that rely on site specific linear and non‐linear regression water temperature (Tw) subroutines forced solely with observed air temperature (Ta) may not accurately estimate Tw in mixed‐use urbanizing watersheds where hydrogeological and land use complexity may confound common Tw regime assumptions. A nested‐scale experimental watershed study design was used to test Tw model predictions in a representative mixed‐use urbanizing watershed of the central USA. The linear regression Tw model used in the Soil and Water Assessment Tool (SWAT), a non‐linear regression Tw model, and a process‐based Tw model that accounts for watershed hydrology were evaluated. The non‐linear regression Tw model tested at a daily time step performed significantly (P < 0.01) better than the linear Tw model currently used in SWAT. Both regression Tw models overestimated Tw in lower temperature ranges (Tw < 10.0 °C) with percent bias (PBIAS) values ranging from ?28.2% (non‐linear Tw model) to ?66.1% (linear regression Tw model) and underestimated Tw in the higher temperature range (Tw > 25.0 °C) by 3.2%, and 7.2%, respectively. Conversely, the process‐based Tw model closely estimated Tw in lower temperature ranges (PBIAS = 4.5%) and only slightly underestimated Tw in the higher temperature range (PBIAS = 1.7%). Findings illustrate the benefit of integrating process‐based Tw models with hydrologic models to improve model transferability and Tw predictive confidence in urban mixed‐land use watersheds. The findings in this work are distinct geographically and in terms of mixed‐land use complexity and are therefore of immediate value to land‐use managers in similarly urbanizing watersheds globally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
299.
300.
The U.S. road network is one of the nation's most important capital assets and is vital to the functioning of the U.S. economy. Maintaining this asset involves approximately $134 billion of government funds annually from Federal, State, and local agencies. Climate change may represent a risk or an opportunity to this network, as changes in climate stress will affect the resources necessary for both road maintenance and construction projects. This paper develops an approach for estimating climate-related changes in road maintenance and construction costs such that the current level of service provided by roads is maintained over time. We estimate these costs under a baseline scenario in which annual mean global temperature increases by 1.5 °C in 2050 relative to the historical average and a mitigation scenario under which this increase in mean temperature is limited to 1.0 °C. Depending on the nature of the changes in climate that occur in a given area, our analysis suggests that climate change may lead to a reduction in road maintenance and/or construction costs or an increase in costs. Overall, however, our analysis shows that climate change, if unchecked, will increase the annual costs of keeping paved and unpaved roads in service by $785 million in present value terms by 2050. When not discounted, this figure increases to $2.8 billion. Policies to reduce greenhouse gas emissions are estimated to reduce these costs by approximately $280 million in present value terms and by $885 million when not discounted. These costs vary substantially by region and time period, information that should be important for transportation planners at the national, state, and local levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号