首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66165篇
  免费   1121篇
  国内免费   493篇
测绘学   1634篇
大气科学   5273篇
地球物理   13725篇
地质学   21402篇
海洋学   5715篇
天文学   15214篇
综合类   133篇
自然地理   4683篇
  2020年   474篇
  2019年   495篇
  2018年   933篇
  2017年   917篇
  2016年   1362篇
  2015年   1011篇
  2014年   1413篇
  2013年   3235篇
  2012年   1488篇
  2011年   2271篇
  2010年   1938篇
  2009年   2917篇
  2008年   2657篇
  2007年   2390篇
  2006年   2455篇
  2005年   2131篇
  2004年   2234篇
  2003年   2059篇
  2002年   1963篇
  2001年   1774篇
  2000年   1746篇
  1999年   1504篇
  1998年   1490篇
  1997年   1480篇
  1996年   1272篇
  1995年   1208篇
  1994年   1090篇
  1993年   994篇
  1992年   943篇
  1991年   799篇
  1990年   1008篇
  1989年   849篇
  1988年   752篇
  1987年   926篇
  1986年   816篇
  1985年   1019篇
  1984年   1181篇
  1983年   1123篇
  1982年   1016篇
  1981年   976篇
  1980年   833篇
  1979年   815篇
  1978年   867篇
  1977年   787篇
  1976年   749篇
  1975年   695篇
  1974年   703篇
  1973年   710篇
  1972年   440篇
  1971年   384篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0–4 m), the shallow root zone (0–0.35 m), and the full sediment profile (0–6 m) in response to site hydrology (daily river stage and daily groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0–0.35 m], middle zone [0.35–4 m], and bottom zone [4–6]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly, with changes in soil elevation for the entire profile (Adjusted R2 = 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 = 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.  相似文献   
992.
The dynamics of terrestrial ecosystems depends on interactions between carbon, nutrient and hydrological cycles. Terrestrial ecosystems retain carbon in live biomass (aboveground and belowground), decomposing organic matter, and soil. Carbon is exchanged naturally between these systems and the atmosphere through photosynthesis, respiration, decomposition, and combustion. Human activities change carbon stock in these pools and exchanges between them and the atmosphere through land-use, land-use change, and forestry.In the present study we estimated the wood (stem) biomass, growing stock (GS) and carbon stock of Indian forests for 1984 and 1994. The forest area, wood biomass, GS, and carbon stock were 63.86 Mha, 4327.99 Mm3, 2398.19 Mt and 1085.06 Mt respectively in 1984 and with the reduction in forest area, 63.34 Mha, in 1994, wood biomass (2395.12 Mt) and carbon stock (1083.69 Mt) also reduced subsequently. The Conifers, of temperate region, stocked maximum carbon in their woods, 28.88 to 65.21 t C ha−1, followed by Mangrove forests, 28.24 t C ha−1, Dipterocarp forests, 28.00 t C ha−1, and Shorea robusta forests, 24.07 t C ha−1. Boswellia serrata, with 0.22 Mha forest area, stocked only 3.91 t C ha−1. To have an idea of rate of carbon loss the negative changes (loss of forest area) in forest area occurred during 1984–1994 (10yrs) and 1991–1994 (4yrs) were also estimated. In India, land-use changes and fuelwood requirements are the main cause of negative change. Total 24.75 Mt C was lost during 1984–1994 and 21.35 Mt C during 1991–94 at a rate of 2.48 Mt C yr−1 and 5.35 Mt C yr−1 respectively. While in other parts of India negative change is due to multiple reasons like fuelwood, extraction of non-wood forest products (NWFPs), illicit felling etc., but in the northeastern region of the country shifting cultivation is the only reason for deforestation. Decrease in forest area due to shifting cultivation accounts for 23.0% of the total deforestation in India, with an annual loss of 0.93 Mt C yr−1.  相似文献   
993.
Turbulent fluctuations have been investigated in the internal boundary layer (IBL) which forms after a dry-to-wet surface transition. The IBL is defined as that part of the atmospheric surface layer where the influence of the downstream surface is noticeable. The results of the application of three different quadrant analysis techniques are presented. The three techniques, in increasing order of the amount of information supplied, provide:
  1. the diurnal variation of quadrant contribution (C i), number fraction (T i) and conditional average (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeyykJeUabm4DayaafaGabm4CayaafaGaeyOkJe-aaSbaaSqaaiaa% dMgaaeqaaaaa!4215!\[\langle w's'\rangle _i \], with s = T or q) of vertical sensible and latent heat fluxes,
  2. the quadrant contribution and number of samples of different sizes depending on the relative magnitude of each sample, and
  3. the distribution of the nondimensional probability density function.
The results show that in the IBL the vertical flux of sensible heat is maintained by (i) a small fraction of large samples with warm air carried upwards, and (ii) a larger fraction of small samples with cool air carried downwards. Both processes are almost equal in importance. In the morning and near the top of the IBL negative temperature fluctuations are limited by the near-uniform temperature conditions upstream and above the IBL. This limitation reduces, at that location, the conditional average of the sinking motions of cool air. Closer to the wet surface the negative temperature fluctuations are less susceptible to the above mentioned limitation. As a consequence contributions from all four quadrants are almost equal leading to a very small vertical heat flux. In the presence of a temperature inversion over both the upstream and the downstream terrain, shear-generated turbulence appears to be the cause of the relative abundance of sinking motions of warm air and rising motions of cool air, leading to a reversal of the sensible heat flux. The latent heat flux is positive (i.e. directed away from the surface) at all times and is maintained in almost equal amount by (i) a small number of large magnitude samples with moist air carried upwards, and (ii) small magnitude samples with sinking motions of dry air. These sinking motions of dry air are far more numerous, especially in the morning, but their conditional average is very small. The abundance of sinking motions of dry air is attributed to the fact that over the downstream terrain evaporation is greatly enhanced, leading to a skewed w′q′ signal. This skewness is clearly visible in the w′q′-probability density distribution of the morning runs. In the evening the asymmetry between these two different contributions disappears. This is because evaporation is greatly reduced and large positive humidity fluctuations no longer occur.  相似文献   
994.
995.
新疆东准噶尔锡矿北花岗斑岩的锆石LA-ICP-MS U-Pb测年   总被引:5,自引:0,他引:5  
对东准噶尔锡矿北花岗斑岩进行锆石LA-ICP-MS U-Pb测年,获得206Pb/238U加权平均年龄为(281±10)Ma,MSWD=9.3,206Pb/238U-207Pb/235U谐和曲线图中下交点年龄为(278±11)Ma,MSWD=7.5,两者在误差范围内完全一致,时代属于早二叠世。结果表明,锡矿北花岗斑岩形成的时代属于东准噶尔后碰撞深成岩浆活动的范围(330~265Ma),晚于东准噶尔乌伦古河碱性花岗岩和卡拉麦里碱性花岗岩的形成时代(300Ma左右),以花岗斑岩为代表的晚古生代岩浆侵入活动延续到早二叠世晚期。  相似文献   
996.
The U-Th-Pb isotope systematics of the eucrite “Juvinas” have been studied in whole rock fragments as well as in plagioclases and pyroxenes. The results show that this monomict breccia crystallized with a very high UPb initial ratio at T = 4.539 ± 0.004 AE ago. There is evidence for a less radiogenic Pb component (206Pb204Pb = 13.0; 207Pb204Pb = 13.5; 208Pb204Pb = 32.71) interpreted as “exotic lead” induced by a meteoritical impact at the surface of the Juvinas parent body, 1.92 ± 0.06 AE ago.  相似文献   
997.
998.
999.
Whether or not fishers comply with regulation depends on the economic and social context in which they operate their vessels. This is how conventional theory explains the phenomenon of non-compliance. It treats state–community interaction processes not as direct causes for non-compliance but rather as background conditions shaping individual fishers’ perception and decisions for action. This paper argues that conventional theory fails to include the dynamics of tempo-relational processes between state and communities, which explains collective patterns of non-compliance in fisheries. The paper addresses this hiatus in the literature, using a process-sociological approach to analyse non-compliance in Vietnamese marine fisheries. The analysis highlights that Vietnamese marine fisheries are mainly regulated through informal networks of trust and mistrust, which function through their interplay with the highly centralised and formalised Vietnamese state. Based on this assessment, the paper concludes that outcomes of processes of the dynamic social interplay between state and communities are semi-dependent on individual perception and action, and as such have a causal effect of their own on patterns of non-compliance in fisheries.  相似文献   
1000.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号