首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66160篇
  免费   1121篇
  国内免费   493篇
测绘学   1634篇
大气科学   5272篇
地球物理   13722篇
地质学   21401篇
海洋学   5715篇
天文学   15214篇
综合类   133篇
自然地理   4683篇
  2020年   473篇
  2019年   495篇
  2018年   933篇
  2017年   916篇
  2016年   1362篇
  2015年   1011篇
  2014年   1413篇
  2013年   3235篇
  2012年   1488篇
  2011年   2271篇
  2010年   1938篇
  2009年   2917篇
  2008年   2657篇
  2007年   2390篇
  2006年   2455篇
  2005年   2131篇
  2004年   2234篇
  2003年   2059篇
  2002年   1963篇
  2001年   1774篇
  2000年   1746篇
  1999年   1504篇
  1998年   1490篇
  1997年   1480篇
  1996年   1272篇
  1995年   1208篇
  1994年   1090篇
  1993年   994篇
  1992年   943篇
  1991年   799篇
  1990年   1008篇
  1989年   848篇
  1988年   752篇
  1987年   926篇
  1986年   816篇
  1985年   1019篇
  1984年   1181篇
  1983年   1123篇
  1982年   1016篇
  1981年   976篇
  1980年   833篇
  1979年   815篇
  1978年   867篇
  1977年   787篇
  1976年   749篇
  1975年   695篇
  1974年   703篇
  1973年   708篇
  1972年   440篇
  1971年   384篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-β configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered, both surface and body waves are able to propagate. When the perpendicular wavenumber is larger than a certain value, the body kink mode becomes a surface wave. In addition, a sausage surface mode is found below the internal cutoff frequency. When nonuniformity in the equilibrium is included, surface and body modes are damped by resonant absorption. In this paper, first, a normal-mode analysis is performed and the period, the damping rate, and the spatial structure of the eigenfunctions are obtained. Then, the time-dependent problem is solved, and the conditions under which one or the other type of mode is excited are investigated.  相似文献   
992.
Recent advances in the understanding of the properties of supernova remnant shocks have been precipitated by theChandra and XMM X-ray Observatories, and the HESS Atmospheric Čerenkov Telescope in the TeV band. A critical problem for this field is the understanding of the relative degree of dissipative heating/energization of electrons and ions in the shock layer. This impacts the interpretation of X-ray observations, and moreover influences the efficiency of injection into the acceleration process, which in turn feeds back into the thermal shock layer energetics and dynamics. This paper outlines the first stages of our exploration of the role of charge separation potentials in non-relativistic electron-ion shocks where the inertial gyro-scales are widely disparate, using results from a Monte Carlo simulation. Charge density spatial profiles were obtained in the linear regime, sampling the inertial scales for both ions and electrons, for different magnetic field obliquities. These were readily integrated to acquire electric field profiles in the absence of self-consistent, spatial readjustments between the electrons and the ions. It was found that while diffusion plays little role in modulating the linear field structure in highly oblique and perpendicular shocks, in quasi-parallel shocks, where charge separations induced by gyrations are small, and shock-layer electric fields are predominantly generated on diffusive scales.  相似文献   
993.
In recently developed laser-driven shockless compression experiments an ablatively driven shock in a primary target is transformed into a ramp compression wave in a secondary target via unloading followed by stagnation across an intermediate vacuum gap. Current limitations on the achievable peak longitudinal stresses are limited by the ability of shaping the temporal profile of the ramp compression pulse. We report on new techniques using graded density reservoirs for shaping the loading profile and extending these techniques to high peak pressures.  相似文献   
994.
Using a theoretical model describing pulse shapes, we have clarified the relations between the observed pulses and their corresponding timescales, such as the angular spreading time, the dynamic time as well as the cooling time. We find that the angular spreading timescale caused by curvature effect of fireball surface only contributes to the falling part of the observed pulses, while the dynamic one in the co‐moving frame of the shell merely contributes to the rising portion of pulses provided the radiative time is negligible. In addition, the pulses resulted from the pure radiative cooling time of relativistic electrons exhibit properties of fast rise and slow decay (a quasi‐FRED) profile together with smooth peaks. Besides, we interpret the phenomena of wider pulses tending to be more asymmetric to be a consequence of the difference in emission regions. Meanwhile, we find the intrinsic emission time is decided by the ratios of lorentz factors and radii of the shells between short and long bursts. Based on the analysis of asymmetry, our results suggest that the long GRB pulses may occur in the regions with larger radius, while the short bursts could locate at the smaller distance from central engine. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
995.
The behavior of the orbits in a galaxy model composed of an harmonic core and a strong bar potential is studied. Numerical calculations show that a large number of orbits display chaotic motion. These orbits are low angular momentun orbits. The percentage of chaotic orbits increases as the angular velocity of the system increases or the strength of the harmonic term decreases. A new dynamical parameter, the S(c) spectrum, is introduced and used to detect the island motion and the evolution of the sticky regions. Comparison to previously obtained results reveals the leading role of the new spectrum. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
996.
Abstract– We used a combination of different analytical techniques to study particle W7190‐D12 using microinfrared spectroscopy, micro‐Raman spectroscopy, and field emission scanning electron microscopy (FESEM) energy dispersive X‐ray spectroscopy (EDS). The particle consists mainly of hematite (α‐Fe2O3) with considerable variations in structural disorder. It further contains amorphous (Na,K)‐bearing Ca,Al‐silicate and organic carbon. Iron‐bearing spherules (<150 nm in diameter) cover the surface of this particle. At local sites of structural disorder at the hematite surface, the hematite spheres were reduced to FeO in the presence of organic carbons forming FeO‐spheres. However, metallic Fe spheres cannot be excluded based on the available data. To the best of our knowledge, this particle is the first detection of such spherules at the surface of a stratospheric dust particle. Although there is no definitive evidence for an extraterrestrial origin of particle W7190‐D12, we suggest that it could be an IDP that had moved away from the asteroid‐forming region of the early solar system into the outer solar system of the accreting Kuiper Belt objects. After it was released from a Jupiter family comet, this particle became part of the zodiacal cloud. Atmospheric entry flash‐heating caused (1) the formation of microenvironments of reduced iron oxide when indigenous carbon materials reacted with hematite covering its surface resulting in the formation of FeO‐spheres and (2) Na‐loss from Na,Al‐plagioclase. The particle of this study, and other similar particles on this collector, may represent a potentially new type of nonchondritic IDPs associated with Jupiter family comets, although an origin in the asteroid belt cannot be ignored.  相似文献   
997.
The new Solar telescope GREGOR is designed to observe small‐scale dynamic magnetic structures below a size of 70 km on the Sun with high spectral resolution and polarimetric accuracy. For this purpose, the polarimetric concept of GREGOR is based on a combination of post‐focus polarimeters with pre‐focus equipment for high precision calibration. The Leibniz‐Institute for Astrophysics Potsdam developed the GREGOR calibration unit which is an integral part of the telescope. We give an overview of the function and design of the calibration unit and present the results of extensive testing series done in the Solar Observatory “Einsteinturm” and at GREGOR (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
998.
999.
1000.
Prominent in the 'Field of Streams'– the Sloan Digital Sky Survey map of substructure in the Galactic halo – is an 'Orphan Stream' without obvious progenitor. In this numerical study, we show a possible connection between the newly found dwarf satellite Ursa Major II (UMa II) and the Orphan Stream. We provide numerical simulations of the disruption of UMa II that match the observational data on the position, distance and morphology of the Orphan Stream. We predict the radial velocity of UMa II as −100 km s−1, as well as the existence of strong velocity gradients along the Orphan Stream. The velocity dispersion of UMa II is expected to be high, though this can be caused both by a high dark matter content or by the presence of unbound stars in a disrupted remnant. However, the existence of a gradient in the mean radial velocity across UMa II provides a clear-cut distinction between these possibilities. The simulations support the idea that some of the anomalous, young halo globular clusters like Palomar 1 or Arp 2 or Ruprecht 106 may be physically associated with the Orphan Stream.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号