首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99240篇
  免费   1490篇
  国内免费   749篇
测绘学   2401篇
大气科学   7265篇
地球物理   20443篇
地质学   33435篇
海洋学   8550篇
天文学   22877篇
综合类   216篇
自然地理   6292篇
  2021年   703篇
  2020年   864篇
  2019年   891篇
  2018年   1846篇
  2017年   1721篇
  2016年   2324篇
  2015年   1489篇
  2014年   2327篇
  2013年   4925篇
  2012年   2512篇
  2011年   3585篇
  2010年   3141篇
  2009年   4497篇
  2008年   3961篇
  2007年   3757篇
  2006年   3682篇
  2005年   3005篇
  2004年   3121篇
  2003年   2839篇
  2002年   2762篇
  2001年   2454篇
  2000年   2388篇
  1999年   2056篇
  1998年   2047篇
  1997年   1985篇
  1996年   1762篇
  1995年   1687篇
  1994年   1519篇
  1993年   1390篇
  1992年   1313篇
  1991年   1195篇
  1990年   1431篇
  1989年   1219篇
  1988年   1085篇
  1987年   1366篇
  1986年   1198篇
  1985年   1488篇
  1984年   1708篇
  1983年   1609篇
  1982年   1450篇
  1981年   1432篇
  1980年   1223篇
  1979年   1174篇
  1978年   1245篇
  1977年   1118篇
  1976年   1086篇
  1975年   1038篇
  1974年   1009篇
  1973年   1040篇
  1972年   638篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recent trends in pre-monsoon daily temperature extremes over India   总被引:6,自引:0,他引:6  
Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season (March–May) is the hottest part of the year over almost the entire South Asian region, in which hot weather extremes including heat waves are recurring natural hazards having serious societal impacts, particularly on human health. In the present paper, recent trends in extreme temperature events for the pre-monsoon season have been studied using daily data on maximum and minimum temperatures over a well-distributed network of 121 stations for the period 1970–2005. For this purpose, time series of extreme temperature events have been constructed for India as a whole and seven homogeneous regions, viz., Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP).  相似文献   
992.
The Berchtesgaden National Park (Bavaria, Germany), a study site of the UNESCO Man and the Biosphere program in the catchment of Berchtesgadener Ache, is introduced as a platform for interdisciplinary research. As the investigation of how human activities affect the natural resources in the park area, which has been defined a main aim of the program, naturally requires expertise from different scientific fields, interdisciplinary research has been fostered in the national park plan since the very beginning of the Man and the Biosphere program in 1981. To analyze the complex interactions and mutual dependencies between socio-economic and natural systems, a variety of monitoring programs have been initialized in different disciplines (e.g. climate sciences, zoology, botany) that are addressed in this paper. As a result of these research efforts, the park offers a profound data basis to be used in future studies (e.g. land cover classifications, maps of geological and soil conditions). Detailed information is provided on a climate monitoring network that has been installed in the park starting in the year 1993. The network has been continuously extended over the years and now provides extraordinary comprehensive information on meteorological conditions in the park, setting the basis for current as well as for potential future climate-related studies. A special characteristic of the station network is the fact that it covers a large range of elevations from 600 m a.s.l in the valleys to 2,600 m a.s.l in the summit regions and is therefore able to capture altitudinal gradients in meteorological variables as typical for Alpine regions. Due to the large number of stations in high elevations (15 stations are in elevations higher than 1,500 m a.s.l) the network provides information on the complex hydrometeorological conditions in summit regions which are often insufficiently represented in observation networks due to the increased costs for maintenance of climate stations in these locations. Beside the various monitoring programs, a variety of numerical models have been (further) developed for application in the park area that make extensive use of the different data collected and therefore largely benefit from the comprehensive data pool. The potential and necessity of the climate monitoring network for modelling studies is demonstrated by utilizing the meteorological recordings in the framework of a hydrometeorological simulation experiment. Further examples of environmental modelling efforts are shortly described together with preliminary model results.  相似文献   
993.
The simulation and prediction of extreme heat over Australia on intraseasonal timescales in association with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) is assessed using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA). The analysis is based on hindcasts over 1981–2010 and focuses on weeks 2 and 3 of the forecasts, i.e. beyond a typical weather forecast. POAMA simulates the observed increased probabilities of extreme heat during El Niño events, focussed over south eastern and southern Australia in SON and over northern Australia in DJF, and the decreased probabilities of extreme heat during La Niña events, although the magnitude of these relationships is smaller than observed. POAMA also captures the signal of increased probabilities of extreme heat during positive phases of the IOD across southern Australia in SON and over Western Australia in JJA, but again underestimates the strength of the relationship. Shortcomings in the simulation of extreme heat in association with ENSO and the IOD over southern Australia may be linked to deficiencies in the teleconnection with Indian Ocean SSTs. Forecast skill for intraseasonal episodes of extreme heat is assessed using the Symmetric Extremal Dependence Index. Skill is highest over northern Australia in MAM and JJA and over south-eastern and eastern Australia in JJA and SON, whereas skill is generally poor over south-west Western Australia. Results show there are windows of forecast opportunity related to the state of ENSO and the IOD, where the skill in predicting extreme temperatures over certain regions is increased.  相似文献   
994.
The Kamoto deposit consists of two stratiform orebodies separated by a barren sedimentary unit. It is a copper and cobalt deposit, the main features of which are summarized in the first part of the paper. Above the upper orebody, dolostone beds are found, where pyrite is the only sulfide mineral. This pyrite was investigated with the help of a microprobe: all idiomorphic grains were found to be surrounded by a well-defined rim, where the cobalt content reaches 4%; framboidal grains were also found to be heterogeneous with respect to cobalt. The distribution of nickel and copper is described. These observations afford one more evidence that post-depositional events played an important role in the Mine Series of Katanga, especially with regard to heavy metals geochemistry.
Resume Le gisement de Kamoto est constitué de deux corps minéralisés stratiformes séparés par une unité sédimentaire stérile. C'est un gisement de cuivre et de cobalt dont les principales caractéristiques sont brièvement résumées. Audessus du corps minéralisé supérieur, on trouve des couches de dolomie, où la pyrite est le seul sulfure présent. Cette pyrite a été étudiée à l'aide d'une microsonde: tous les grains idiomorphes y sont entourés d'une bordure bien nette, où la teneur en cobalt atteint 4%; les grains d'apparence framboïdale sont également hétérogènes au point de vue de leur teneur en cobalt. La distribution du nickel et du cuivre est décrite. Ces observations apportent um témoignage supplémentaire de l'importance des événements postérieurs au dépôt dans la «Série des Mines» katangaise, tout spécialement en ce qui concerne la géochimie des métaux lourds. Elles démontrent que le «système» constitué par la roche sédimentaire est resté ouvert pendant un certain temps après la sédimentation.
  相似文献   
995.
Twenty seven geochemical reference samples have been analysed for cadmium using the stable isotope dilution technique. These include four USGS, one NBS, five CRPG, eleven ANRT and six NIMROC samples. Each sample has been analysed at least in duplicate.
The four USGS samples have previously been measured in this laboratory by Rosman and De Laeter, but the present results are believed to be more accurate than the earlier data. Our results for the other twenty three samples are much lower than most of the published data. There is also evidence of cadmium inhomogeneities in some of the samples.  相似文献   
996.
A comparative analysis has been performed of the channel-base current and light waveforms for four rocket-triggered lightning strokes. It has been found that the current and light signals at the bottom of the channel exhibit a linear relationship (direct proportionality) in their rising portions. However, just after the peaks the linearity disappears, and the light signals usually decrease faster than the currents during the next several microseconds. Later, this trend is reversed and in some cases the light signals show another rising trend, even when the currents continue to decrease. The linear light/current relationship for the rising portions of the waveforms appears to be the same for different strokes. The findings support the idea of evaluating the variation of return stroke current along the lightning return stroke channel using light signals, provided that evaluation is limited to the rising portions of those signals and assuming that the light/current relationship observed at the bottom of the channel holds at other heights.  相似文献   
997.
R. J. KORSCH 《Sedimentology》1978,25(2):247-265
The subdivision of thick sequences of turbidite sediments has been problematical because of the monotonous nature of the units. One method, of using detailed detrital petrography for a large number of specimens, has delineated variations with a sequence of Late Palaeozoic age in eastern Australia. The rocks occur within a single structural block and are all members of one sedimentary petrographic province. They have been subdivided into three stratigraphic units (Moombil Beds, Brooklana Beds and Coramba Beds) and greywackes from these units are quartz-poor to quartz-intermediate, feldspathic or volcanolithic types. Dacitic volcanism has provided most of the detritus and the contribution from non-volcanic sources is small. The Coramba Beds are further subdivided into four petrographic units which are parallel to the stratigraphic boundaries. These lithostratigraphic units are based on the presence or absence of detrital hornblende, and the relative ratio of volcanic lithic fragments to feldspar. Vertical petrographic variations within the entire sequence indicate that although the acid volcanic source was predominant throughout the time of deposition, there is a noticeable increase in the contribution from intermediate-volcanic, acid-plutonic, low-grade metamorphic and sedimentary sources towards the top of the sequence. Detrital hornblende is also present in the upper parts of the sequence.  相似文献   
998.
Two-Dimensional Seismic Refraction Tomography   总被引:8,自引:0,他引:8  
  相似文献   
999.
The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping “layer-cake” clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry.The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6–15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils.The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace sequences that can be correlated along valleys for tens of kilometers. Coastal Plain soils are typically as thick as 2 to 8 m, have high sand content throughout, and have sandy epipedons. These epipedons consist of both A and E horizons and are 1 to 4 m thick. In Coastal Plain soils, the boundaries are transitional between the solum and the underlying parent material and between weathered and unweathered parent material. Infiltration rates for Coastal Plain soils are typically higher at 13–28 cm/h, than are those for Piedmont soils. Indeed, for unconsolidated quartz sand, rates may exceed 50 cm/h. Water moves directly from the soil into the parent material through intergranularpores with only minor channelization along macropores, joints, and fractures. The comparatively high infiltration capacity results in relatively low surface runoff, and correspondingly less erosion than on the Piedmont uplands.Due to differences in Piedmont and Coastal Plain erosion rates, topographic inversion is common along the Fall Zone; surfaces on Cenozoic sedimentary deposits of the Coastal Plain are higher than erosional surfaces on regolith weathered from late Precambrian to early Paleozoic crystalline rocks of the Piedmont. Isotopic, paleontologic, and soil data indicate that Coastal Plain surficial deposits are post-middle Miocene to Holocene in age, but most are from 5 to 2 Ma. Thus, the relatively uneroded surfaces comprise a Pliocene landscape. In the eastern third of the Coastal Plain, deposits that are less than 3.5 Ma include alluvial terraces, marine terraces and barrier/back-barrier complexes as morphostratigraphic units that cover thousands of square kilometers. Isotopic and soil data indicate that eastern Piedmont soils range from late Pliocene to Pleistocene in age, but are predominantly less than 2 Ma old. Thus, the eroded uplands of the Piedmont “peneplain” comprise a Pleistocene landscape.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号