首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   10篇
测绘学   2篇
大气科学   17篇
地球物理   23篇
地质学   40篇
海洋学   24篇
天文学   39篇
综合类   1篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   6篇
  2014年   13篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有169条查询结果,搜索用时 618 毫秒
101.
Abstract— Cosmogenic He, Ne, and Ar were measured in the iron meteorites Grant (IIIAB) and Carbo (IID) to re‐determine their preatmospheric geometries and exposure histories. We also investigated the influence of sulphur‐ and/or phosphorus‐rich inclusions on the production rates of cosmogenic Ne. Depth profiles measured in Grant indicate a preatmospheric center location 117 mm left from the reference line and 9 mm below bar B, which is clearly different (?10 cm) from earlier results (?165 mm left from the reference line on bar F). For Carbo the preatmospheric center location was found to be 120 mm right of the reference line and 15 mm above bar J, which is in agreement with literature data. The new measurements indicate a spherical preatmospheric shape for both meteorites and, based on literature 36C1 data, the radii were estimated to be about 32 cm and 70 cm for Grant and Carbo, respectively. We demonstrate that minor elements like S and P have a significant influence on the production rates of cosmogenic Ne. In our samples, containing on average 0.5% S and/or P, about 20% of 21Ne was produced from these minor elements. Using measured 21Ne concentrations and endmember 22Ne/21Ne ratios for Fe + Ni and S + P, respectively, we show that it is possible to correct for 21Ne produced from S and/or P. The thus corrected data are then used to calculate new 41K‐40K exposure ages—using published K data—which results in 564 ± 78 Ma for Grant and 725 ± 100 Ma for Carbo. The correction always lowers the 21Ne concentrations and consequently decreases the 41K‐40K exposure ages. The discrepancies between 36Cl‐36Ar and 41K‐40K ages are accordingly reduced. The existence of a significant long‐term variation of the GCR, which is based on a former 30–50% difference between 41K‐40K and 36Cl‐36Ar ages, may warrant re‐investigation.  相似文献   
102.
103.
104.
Abstract— Calcium‐aluminum‐rich inclusions (CAIs) were among the first solids in the solar system and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped noble gases have recently been detected, the presence of trapped gases in CAIs is unclear but could have important implications for CAI formation and for early solar system evolution in general. To reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus, uncontaminated samples of CAIs from the CV3 chondrites Allende, Axtell, and Efremovka. The 20Ne/22Ne ratios of all CAIs studied here are <0.9, indicating the absence of trapped Ne as, e.g., Ne‐HL, Ne‐Q, or solar wind Ne. The 21Ne/22Ne ratios range from 0.86 to 0.72, with fine‐grained, more altered CAIs usually showing lower values than coarse‐grained, less altered CAIs. This is attributed to variable amounts of cosmogenic Ne produced from Na‐rich alteration phases rather than to the presence of Ne‐G or Ne‐R (essentially pure 22Ne) in the samples. Our interpretation is supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common in CAIs. The 36Ar/38Ar ratios are between 0.7 and 4.8, with fine‐grained CAIs within one meteorite showing higher ratios than the coarse‐grained ones. This agrees with higher concentrations of cosmogenic 36Ar produced by neutron capture on 35Cl with subsequent β?‐decay in finer‐grained, more altered, and thus, more Cl‐rich CAIs than in coarser‐grained, less altered ones. Although our data do not strictly contradict the presence of small amounts of Ne‐G, Ne‐R, or trapped Ar in the CAIs, our noble gas signatures are most simply explained by cosmogenic production, mainly from Na‐, Ca‐, and Cl‐rich minerals.  相似文献   
105.

As renewable energy, geothermal can contribute substantially to the energy transition. To generate electricity or to harvest heat, high-saline fluids are tapped by wells of a few kilometres and extracted from hydrothermal reservoirs. After the heat exchanger units have been passed by, these fluids are reinjected into the reservoir. Due to the pressure and temperature differences between the subsurface and the surface, as well as the cooling of the fluids in the power plant, unwanted chemical reactions can occur within the reservoir, in the borehole, and within the power plant itself. This can reduce the permeability of the reservoir as well as the output of the geothermal power plant. This study aims to simulate real subsurface reactions using batch and leaching experiments with sandstone or sandstone powder as solid phase, and deionised water or natural brine as liquid phase. It is demonstrated that fluid composition changes after only a few days. In particular, calcite, aragonite, clay minerals, and zinc phases precipitate from the natural brine. In contrast, in particular minerals containing potassium, arsenic, barium, and silica are dissolved. Due to the experimental set-up, these mineral reactions mainly took place on the surface of the samples, which is why no substantial changes in petrophysical properties could be observed. However, it is assumed that the observed reactions on the reservoir scale have a relevant influence on parameters such as permeability.

  相似文献   
106.
China is rising and gradually developing into an innovation-oriented economy. This transition is fueled by public and private investment in education and by increasing inputs into science and technology. Little attention, however, has been paid to the great differences in China-specific context peculiarity. Hence, the paper assesses Chinese innovation networks using a comprehensive analytical model that includes network configuration, regional environment, government interference and firm attributes. The empirical analysis examines China’s machinery manufacturing industry to test the determinants of the spatial character of Chinese innovation networks based on questionnaire surveys and illustrative cases. Our study finds that Chinese innovation networks are affected not only by innovation resource endowments and firm attributes, but also by government interference and regional culture. Regarding the influence of regional culture, the typical Northern culture with the importance of guanxi plays an important role in the process of searching for partners and makes the innovation network and interpersonal network interwoven. Firms’ ownership and innovation ability are the two essential variables to determine whether any of the regional elements are of significance.  相似文献   
107.
108.
109.
Richter  Ingo  Tokinaga  Hiroki 《Climate Dynamics》2020,55(9-10):2579-2601

General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic and its linkage to the tropical Pacific. While, on average, mean state biases have improved little, relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.

  相似文献   
110.
We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic‐rays (SCR) and galactic cosmic‐rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR‐produced nuclides are assumed to be equal to recoil losses for SCR‐produced nuclides. Combining the model predictions with Poynting‐Robertson orbital lifetimes, we calculate cosmic‐ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic‐spherule are in the range <2.2–233 Ma, which corresponds, according to the Poynting‐Robertson drag, to orbital distances in the range 4.0–34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4–6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23–34 AU, clearly indicating a cometary origin, either from short‐period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号