首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
大气科学   1篇
地质学   2篇
天文学   47篇
自然地理   1篇
  2020年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
31.
Within several days of A. Wesley’s announcement that Jupiter was hit by an object on UT 19 July 2009, we observed the impact site with (1) the Hubble Space Telescope (HST) at UV through visible (225–924 nm) wavelengths, (2) the 10-m W.M. Keck II telescope in the near-infrared (1–5 μm), and (3) the 8-m Gemini-North telescope in the mid-infrared (7.7–18 μm). All observations reported here were obtained between 22 and 25 July 2009. Observations at visible and near-infrared wavelengths show that large (~0.75-μm radius) dark (imaginary index of refraction mi  0.01–0.1) particulates were deposited at atmospheric pressures between 10 and 200–300 mbar; analysis of HST-UV data reveals that in addition smaller-sized (~0.1 μm radius) material must have been deposited at the highest altitudes (~10 mbar). Differences in morphology between the UV and visible/near-IR images suggest three-dimensional variations in particle size and density across the impact site, which probably were induced during the explosion and associated events. At mid-infrared wavelengths the brightness temperature increased due to both an enhancement in the stratospheric NH3 gas abundance and the physical temperature of the atmosphere. This high brightness temperature coincides with the center part of the impact site as seen with HST. This observation, combined with (published) numerical simulations of the Shoemaker-Levy 9 impacts on Jupiter and the Tunguska airburst on Earth, suggests that the downward jet from the terminal explosion probably penetrated down to the ~700-mbar level.  相似文献   
32.
We detected a volcanic outburst in Io's northern hemisphere on 17 April 2006 with the OSIRIS imaging spectrometer at Keck, and confirmed it was still erupting on 2 June 2006. The eruption, which we name 060417A, was located in Tvashtar Paterae, ∼100 km southeast of the February 2000 eruption. The observed temperature was , over a surface area of , providing a total thermal output of .  相似文献   
33.
Conor Laver  Imke de Pater 《Icarus》2009,201(1):172-181
We present ground based observations of Io taken with a high spatial resolution imaging spectrometer on 1 and 2 June 2006. We mapped the 1.98 and 2.12 μm absorptions of SO2 frost, across Io's surface. We analyze these data with surface reflectance modeling using the Hapke method to determine the general frost distribution. This analysis also determined a lower limit of 700 μm on the grain size for the areas of strongest absorption. We incorporate our findings of a predominantly equatorial distribution of SO2 frost, with the maps of Carlson et al. [Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., Davies, A.G., Kamp, L.W., Mosher, J.A., Soderblom, L.A., Leader, F.E., Mehlman, R., Clark, R.N., Fanale, F.P., 1997. Geophys. Res. Lett. 24, 2479-2482], McEwen [McEwen, A.S., 1988. Icarus 73, 385-426] and Douté et al. [Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and The Galileo NIMS Team, 2001. Icarus 149, 107-132] to produce a self consistent explanation of the global distribution of SO2. We propose that the differences between the above maps is attributable, in part, to the different bands that were studied by the investigators.  相似文献   
34.
Conor Laver  Imke de Pater 《Icarus》2008,195(2):752-757
We present equivalent width maps of the 1.98 and 2.13 μm SO2 ice absorption bands on the surface of Io. The data were taken on 17 April 2006 with the near-infrared mapping spectrometer, OSIRIS at the W.M. Keck Observatory, Hawaii. The maps show significant regional enhancements of SO2 ice over the Bosphoros, Media, Tarsus and Chalybes Regiones.  相似文献   
35.
Imke de Pater  Bryan J Butler 《Icarus》2003,163(2):428-433
We present the first images and measurement of flux density of Jupiter at a frequency of 74 MHz, obtained with the Very Large Array in September 1998. We observed simultaneously at frequencies of 74 and 330 MHz. We compare our data with observations taken during the same time at other frequencies (presented by de Pater and 13 others, 2003, Icarus 163, 434-448) and show that the spectrum of Jupiter appears to flatten, or perhaps turn over, at lower frequencies.  相似文献   
36.
We present adaptive optics (AO) observations of Io taken with the W.M. Keck II telescope on 18 December 2001 (UT) before the satellite went into eclipse, and while it was in Jupiter's shadow. Making these kind of Io-in-eclipse observations, as well as the associated data reduction and analysis are challenging; hence one focus of the paper is to explain the methods and tools used for these data sets. For the sunlit images Io itself was used as the wavefront reference source, while nearby Ganymede was used as reference ‘star’ when Io was in eclipse. Observations were obtained in K′-, L′-, and M-bands. The sunlit images have been deconvolved using MISTRAL. The Io-in-eclipse data were deconvolved with IDAC and MISTRAL. The former gives better results, both in absolute photometry and in matching the original images. We determined the flux densities of the hot spots from the original Io-in-eclipse data with StarFinder, as well as from the deconvolved images by integrating the intensity over the relevant areas. We determined the highly anisoplanatic PSF via a FFT method from the original data, and used this in StarFinder and as a starting PSF for IDAC and MISTRAL. We derived temperatures and areal coverage of all 19 spots detected in both K′- and L′-band images of Io-in-eclipse. We also determined temperatures and areal coverage of the hot spots visible on the L′- and M-band images of sunlit Io. Most volcanoes contain a compact hot ‘core’ (?10 km2 at 600-800 K) within a larger area at lower temperatures (e.g., ∼102-104 km2 at 300-500 K). The total heat flow contributed by these active volcanoes is 0.2 W m−2, ∼8% of the average global heat flow measured at 5-20 μm by Veeder et al. [J. Geophys. Res. 99 (1994) 17095].  相似文献   
37.
Over the last 15 to 20 years several high quality, high resolution data have been taken with the very large array (VLA). These data exhibit a wide range of ring opening angles (|B|=0 to 26°) and wavelengths (λ=0.7 to 20 cm). At these wavelengths the primary flux from the rings is scattered saturnian thermal emission, with a small contribution coming from the ring particles' own thermal emission. Much of the data do show signs of asymmetries due to wakes either on the ansae or the portion of the rings which occult the planet. As in previous work, we use our Monte Carlo radiative transfer code including idealized wakes [Dunn, D.E., Molnar, L.A., Fix, J.D., 2002. Icarus 160, 132-160; Dunn, D.E., Molnar, L.A., Niehof, J.T., de Pater, I., Lissauer, J.L., 2004. Icarus 171, 183-198] to model the relative contributions of the scattered and thermal radiation emanating from the rings and compare the results to that seen in the data. Although the models do give satisfactory fits to all of our data, we find that no single model can simulate the data at all different |B| and λ. We find that one model works best for moderate and low |B| and another one at higher |B|. The main difference between these models is the ratio of the wake width to their separation. We similarly find that the 2 cm data require higher density wakes than the longer wavelength data, perhaps caused by a preponderance of somewhat smaller ring material in the wakes. We further find evidence for an increase in the physical temperature of the rings with increasing |B|. Continuous observations are required to determine whether the above results regarding variations in wake parameters with |B| and λ are indeed caused by these parameters, or instead by changes over time.  相似文献   
38.
Observations of Comet IRAS-Araki-Alcock have been made with the VLA (Very Large Array) at 6 and 2 cm, when the comet was at geocentric distances of 0.08 and 0.035 AU, respectively. The 3σ upper limits are 90 and 750 μJy at 6 and 2 cm, respectively. We show that the “conventional” icy-grain halo theory is not adequate to explain the data. If there is such a halo, it is either very thin, or does not contain grains with sizes larger than 10–100 μm. Comparison of our limits with a reported detection at 1.3-cm wavelengths shows that if the centimeter-wavelength radiation all arises in the halo, the halo should have an extent of the order of 300–400 km, but an effective area of 100 km2. If only thermal emission from the nucleus is significant, the temperature decreases from about 200°K at the layers probed at 1.3 cm to about 50°K or less at depths probed at 2 cm (assuming unit emissivity at all wavelengths and depths). This can be due to a combination of a lower emissivity and lower physical temperature at larger depths in the comet; both effects are expected when considering theories on microwave emission from glaciers on Earth.  相似文献   
39.
We present observations at near-infrared wavelengths (1-5 μm) of Jupiter’s north polar region and Northern Red Oval (NN-LRS-1). The observations were taken with the near-infrared camera NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck Telescope on UT 21 August 2010. At 5-μm Jupiter’s disk reveals considerable structure, including small bright rings which appear to surround all small vortices. It is striking, though, that no such ring is seen around the Northern Red Oval. In de Pater et al. [2010a. Icarus 210, 742-762], we showed that such rings also exist around all small vortices in Jupiter’s southern hemisphere, and are absent around the Great Red Spot and Red Oval BA. We show here that the vertical structure and extent of the Northern Red Oval is very similar to that of Jupiter’s Red Oval BA. These new observations of the Northern Red Oval, therefore, support the idea of a dichotomy between small and large anticyclones, in which ovals larger than about two Rossby deformation radii do not have 5-μm bright rings. In de Pater et al. [2010a. Icarus 210, 742-762], we explained this difference in terms of the secondary circulations within the vortices. We further compare the brightness distribution of our new 5-μm images with previously published radio observations of Jupiter, highlighting the depletion of NH3 gas over areas that are bright at 5 μm.  相似文献   
40.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号