首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63273篇
  免费   674篇
  国内免费   496篇
测绘学   1520篇
大气科学   3982篇
地球物理   11258篇
地质学   26052篇
海洋学   5392篇
天文学   13563篇
综合类   247篇
自然地理   2429篇
  2022年   464篇
  2021年   724篇
  2020年   750篇
  2019年   844篇
  2018年   3960篇
  2017年   3595篇
  2016年   2956篇
  2015年   911篇
  2014年   1613篇
  2013年   2638篇
  2012年   2582篇
  2011年   4279篇
  2010年   3780篇
  2009年   4313篇
  2008年   3557篇
  2007年   4181篇
  2006年   2098篇
  2005年   1532篇
  2004年   1423篇
  2003年   1457篇
  2002年   1359篇
  2001年   1037篇
  2000年   936篇
  1999年   740篇
  1998年   746篇
  1997年   727篇
  1996年   610篇
  1995年   586篇
  1994年   581篇
  1993年   452篇
  1992年   465篇
  1991年   437篇
  1990年   483篇
  1989年   382篇
  1988年   364篇
  1987年   428篇
  1986年   367篇
  1985年   488篇
  1984年   452篇
  1983年   429篇
  1982年   443篇
  1981年   370篇
  1980年   405篇
  1979年   358篇
  1978年   360篇
  1977年   295篇
  1976年   289篇
  1975年   295篇
  1974年   283篇
  1973年   314篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Litvinenko  Yuri E.  Craig  I.J.D. 《Solar physics》2003,218(1-2):173-181
Flux pile-up magnetic reconnection is traditionally considered only for incompressible plasmas. The question addressed in this paper is whether the pile-up scalings with resistivity are robust when plasma compressibility is taken into account. A simple analytical argument makes it possible to understand why the transition from a highly compressible limit to the incompressible one is difficult to discern in typical simulations spanning a few decades in resistivity. From a practical standpoint, however, flux pile-up reconnection in a compressible plasma can lead to anomalous electric resistivity in the current sheet and flare-like energy release of magnetic energy in the solar corona.  相似文献   
192.
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle.  相似文献   
193.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   
194.
Makarov  V.I.  Filippov  B.P. 《Solar physics》2003,214(1):55-63
We have studied the variations of the height of polar crown prominences according to daily observations of the Sun at the Kodaikanal Observatory (India) during 1905–1975. Polar ring filaments at latitudes 60°–80° are related to the polar magnetic field reversal. A double decrease of the height of polar ring filaments was found in the course of their migration from 40°to the poles. We estimated the limiting height of the equilibrium of polar ring filaments from the stability condition of a strong electric current. We found that the transition from large-scale to small-scale ring filaments reduces the critical height of the stability for the prominences. A model of an inverse-polarity filament was used.  相似文献   
195.
196.
Mid-ultraviolet and optical photometric analysis of helium stars are presented. A linear relation exists between the effective temperature derived from model atmospheres and (1965-V)0 index. The effective temperatures derived from (1965-V)0 index are somewhat higher than that of MK spectral type estimates especially for late B-type helium objects.  相似文献   
197.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   
198.
199.
200.
E. N. Parker 《Solar physics》1985,100(1-2):599-619
The future of solar physics is founded on the existing fundamental unsolved problems in stellar physics. Thus, for instance, the physics of stellar interiors has been called into serious question by the very low-measured neutrino flux. The 71Ga neutrino detection experiment is the next step in unravelling this mystery. If that experiment should find the expected neutrino flux from the basic p-p reaction in the Sun, then astrophysics is in a difficult situation, because the most likely explanation for the low neutrino flux found in the 37Cl experiment would be an error in our calculation of the opacity or an error in our understanding of the elemental abundances in stellar interiors, with serious implications for present ideas on stellar structure and the age of the galaxy.The new methods of helioseismology, for probing the interior of the Sun, have already found the primordial rapid rotation of the central core. The forthcoming world-wide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission.The activity of all stars involves much the same phenomena as make up the activity of the Sun. The effects are too complex, and too foreign to the familiar dynamics in the terrestrial laboratory, to be deciphered by theoretical effort alone. It has become clear through the observational and theoretical work of the past decade or two that much of the essential dynamics of the activity of the atmosphere takes place on scales of the order of 102 km. Thus, an essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a microscopic examination of the surface of the Sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study is essential to determining the significance of the X-ray emission from other stars.This work was supported in part by the National Aeronautics and Space Administration under grant NGL-14-001-001.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号