首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   9篇
  国内免费   9篇
测绘学   5篇
大气科学   40篇
地球物理   56篇
地质学   79篇
海洋学   71篇
天文学   30篇
综合类   9篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   9篇
  2018年   11篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   13篇
  2013年   20篇
  2012年   12篇
  2011年   19篇
  2010年   23篇
  2009年   20篇
  2008年   11篇
  2007年   12篇
  2006年   22篇
  2005年   18篇
  2004年   5篇
  2003年   13篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1971年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
91.
Abstract. The Yuryang gold deposit, comprising a Te‐bearing Au‐Ag vein mineralization, is located in the Cheonan area of the Republic of Korea. The deposit is hosted in Precambrian gneiss and closely related to pegmatite. The mineralized veins display massive quartz textures, with weak alteration adjacent to the veins. The ore mineralization is simple, with a low Ag/Au ratio of 1.5:1, due to the paucity of Ag‐phases. Ore mineralization took place in two different mineral assemblages with paragenetic time; early Fe‐sulfide mineralization and late Fe‐sulfide and Au‐Te mineralization. The early Fe‐sulfide mineralization (pyrite + sphalerite) occurred typically along the vein margins, and the subsequent Au‐Te mineralization is characterized by fracture fillings of galena, sphalerite, pyrrhotite, Te‐bearing minerals (petzite, altaite, hessite and Bi‐Te mineral) and electrum. Fluid inclusions characteristically contain CO2 and can be classified into four types (Ia, Ib, IIa and IIb) according to the phase behavior. The pressure corrected temperatures (≥500d?C) indicate that the deposit was formed at a distinctively high temperature from fluids with moderate to low salinity (<12 wt% equiv. NaCl) and CH4 (1?22 mole %). The sphalerite geo‐barometry yield an estimated pressure about 3.5 ?2.1 kbar. The dominant ore‐deposition mechanisms were CO2 effervescence and concomitant H2S volatilization, which triggered sulfidation and gold mineralization. The measured and calculated isotopic compositions of fluids (δ18OH2O = 10.3 to 12.4 %o; δDH2O = ‐52 to ‐77 %o) may indicate that the gold deposition originated from S‐type magmatic waters. The physicochemical conditions observed in the Yuryang gold deposit indicate that the Jurassic gold deposits in the Cheonan area, including the Yuryang gold deposit are compatible with deposition of the intrusion‐related Au‐Te veins from deeply sourced fluids generated by the late Jurassic Daebo magmatism.  相似文献   
92.
The grid-net electrical conductivity measurement system for detecting exact locations of landfill leachate intrusion in the subsurface was developed in this study. Laboratory and pilot-scale field model tests were performed to evaluate the direct application of a grid-net electrical conductivity measurement system for the detection of landfill leachate. A significant increase in electrical conductivity of soil was observed by adding landfill leachate. This can be explained as an increase in electrical conductivity of pore fluid due to an increase in leachate constituents as charge carriers. In pilot-scale field model tests, leachate intrusion locations were accurately identified at the initial stage of landfill leachate release by the grid-net electrical conductivity measurement system. The electrical conductivity of the subsurface before leachate injection lay within a small range of 24.8–43.0 S/cm. The electrical conductivity values in detected points were approximately ten times more than the conductivity values of the subsurface without landfill leachate intrusion. The results in this study indicate that the grid-net electrical conductivity measurement method has a possible application for detecting locations of landfill leachate intrusion into the subsurface at the initial stage, and thus has great potential in monitoring leachate leakage at waste landfills.  相似文献   
93.
Two distinct ultramafic bodies occur in Baekdong and Bibong in the Hongseong area within Gyeonggi massif of South Korea. The Hongseong area is now extensively documented as an extension of the Dabie-Sulu collision belt in China. The Baekdong ultramafic body has a NWW elongation direction. This elongation trend is similar to the general trend of the Dabie-Sulu collision belt. The Bibong ultramafic body is elongated in a NNE direction and runs parallel to the direction of the main fault in the study area. The Baekdong ultramafic bodies show porphyroclastic and mylonitic textures while those at Bibong exhibit a mosaic texture. Both were grouped into peridotite and serpentinite based on their modal abundance of serpentine. In the olivine (Fo) vs. spinel [Cr# = Cr/ (Cr+Al)] diagram, both ultramafic rocks fall with in olivine spinel mantle array. The compositions of olivine, orthopyroxene and spinel indicate that the Baekdong ultramafic rock formed in deeper parts of the upper-mantle under passive margin tectonic setting. The SREE content of Baekdong ultramafic rock vary from 0.19 to 5.7, exhibits a flat REE pattern in the chondrite-normalized diagram, and underwent 5% partial melting. Conversely, large variation in SREE (0.5 21.53) was observed for Bibong ultramafic rocks with an enrichment of LREE with a negative slope and underwent 17 24% partial melting. The Baekdong ultramafic rocks experienced three stages of metamorphism after a high pressure residual mantle stage. The first stage of metamorphism occurred under the eclogite-granulite transitional facies (1123 911°C, >16.3 kb) the second under the granulite facies (825 740°C, 16.3 11.8 kb) and the third is the retrogressive metamorphism under amphibolite facies (782 718°C, 8.2 8.7 kb) metamorphism. The Baekdong ultramafic rocks had undergone high-P/T metamorphism during subduction of the South China Block, and experienced a fast isothermal uplift, and finally cooled down isobarically. Evidences for metamorphism were not identified in Bibong ultramafic rocks. Hence, the Baekdong ultramafic rocks with in the Hongseong area may indicate a link on the Korean counterpart of Dabie-Sulu collision belt between North and South China Blocks.  相似文献   
94.
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.703300.70555, 143Nd/144Nd = 0.512980.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.6119.12, 207Pb/204Pb = 15.5415.69, 208Pb/204Pb = 38.9839.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.7218.03, 207Pb/204Pb = 15.4415.58, 208Pb/204Pb = 37.7738.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   
95.
The objective of this study is to investigate the effect of boundary element details of structural walls on their deformation capacities. Structural walls considered in this study have different sectional shapes and/or transverse reinforcement content at the boundaries of the walls (called boundary element details hereafter). Four full‐scale wall specimens (3000mm (hw)×1500mm (lw)×200mm (T)) were fabricated and tested. Three specimens are rectangular in section and the other specimen has a barbell‐shaped cross‐section (a wall with boundary columns). The rectangular wall specimens are reinforced according to the common practice used for reinforced concrete residence buildings in Korea and Chile. In this study, the primary variable for these rectangular specimens is the content of transverse reinforcement to confine the boundary elements of a wall. The barbell‐shaped specimen was designed in compliance with ACI 318‐95. The response of the barbell‐shaped specimen is compared with those of other rectangular specimens. The effective aspect ratio of the specimens is set to two in this study. Based on the experimental results, it is found that the deformation capacities of walls, which are represented by displacement ductility, drift ratio and energy dissipation capacities, are affected by the boundary element details. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
96.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   
97.
98.
99.
In current seismic design procedures, base shear is calculated by the elastic strength demand divided by the strength reduction factor. This factor is well known as the response modification factor, R, which accounts for ductility, overstrength, redundancy, and damping of a structural system. In this study, the R factor accounting for ductility is called the ‘ductility factor’, Rμ. The Rμ factor is defined as the ratio of elastic strength demand imposed on the SDOF system to inelastic strength demand for a given ductility ratio. The Rμ factor allows a system to behave inelastically within the target ductility ratio during the design level earthquake ground motion. The objective of this study is to determine the ductility factor considering different hysteretic models. It usually requires large computational efforts to determine the Rμ factor. In order to reduce the computational efforts, the Rμ factor is prepared as a functional form in this study. For this purpose, statistical studies are carried out using forty different earthquake ground motions recorded at a stiff soil site. The Rμ factor is assumed to be a function of the characteristic parameters of each hysteretic model, target ductility ratio and structural period. The effects of each hysteretic model to the Rμ factor are also discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
100.
Building period formulas in seismic design code are evaluated with over 800 apparent building periods from 191 building stations and 67 earthquake events. The evaluation is carried out with the formulas in ASCE 7‐05 for steel and RC moment‐resisting frames, shear wall buildings, braced frames, and other structural types. Qualitative comparison of measured periods and periods calculated from the code formulas shows that the formula for steel moment‐resisting frames generally predicts well the lower bound of the measured periods for all building heights. But the differences between the periods from code formula and measured periods of low‐ to‐medium rise buildings are relatively high. In addition, the periods of essential buildings designed with the importance factor are about 40% shorter than the periods of non‐essential buildings. The code formula for RC moment‐resisting frames describes well the lower bound of measured periods. The formula for braced frames accurately predicts the lower bound periods of low‐to‐medium rise buildings. The formula for shear wall buildings overestimates periods for all building heights. For buildings that are classified as other structural types, the measured building periods can be much shorter than the periods calculated with the code formula. Based on these observations, it is suggested to use Cr factor of 0.015 for shear walls and other structural types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号