首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   12篇
  国内免费   8篇
测绘学   1篇
大气科学   18篇
地球物理   68篇
地质学   69篇
海洋学   60篇
天文学   60篇
综合类   1篇
自然地理   21篇
  2021年   6篇
  2020年   3篇
  2018年   7篇
  2017年   11篇
  2016年   3篇
  2015年   7篇
  2013年   6篇
  2012年   5篇
  2011年   13篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   16篇
  2006年   18篇
  2005年   13篇
  2004年   16篇
  2003年   18篇
  2002年   12篇
  2001年   11篇
  2000年   8篇
  1999年   11篇
  1998年   2篇
  1997年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   9篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1964年   3篇
  1962年   1篇
  1959年   1篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
111.
Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7?W?m?2 (out of 345?W?m?2) and 4?W?m?2 (out of 192?W?m?2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3?W?m?2 (out of 398?W?m?2) and 3?W?m?2 (out of 23?W?m?2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12?W?m?2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106?W?m?2 and 130?W?m?2.  相似文献   
112.
Spatial variability of throughfall (TF) isotopic composition, used as tracer input, influences isotope hydrological applications in forested watersheds. Notwithstanding, identification of the dominant canopy factors and processes that affect the patterns of TF isotopic variability remains ambiguous. Here, we examined the spatio‐temporal variability of TF isotopic composition in a Japanese cypress plantation, in which intensive strip thinning was performed and investigated whether canopy structure at a fine resolution of canopy effect analysis is related to TF isotopic composition and how this is affected by meteorological factors. Canopy openness, as an index of canopy structure, was calculated from hemispherical photographs at different zenith angles. TF samples were collected in a 10 × 10 m experimental plot in both pre‐thinning (from July to November 2010) and post‐thinning (from May 2012 to March 2013) periods. Our results show that thinning resulted in a smaller alteration of input δ18O of gross precipitation, whereas the changes in deuterium excess varied in both directions. Despite the temporal stability of spatial patterns in TF amount, the spatial variability of TF isotopic composition was not temporally stable in both pre‐ and post‐thinning periods. Additionally, after thinning, the isotopic composition of TF was best related to canopy openness calculated at the zenith angle of 7°, exhibiting three different relationships, that is, significantly negative, significantly positive, and nonsignificant. Changes in meteorological factors (wind speed, rainfall intensity, and temperature) were found to affect the relationships between TF δ18O and canopy openness. The observed shifts in the relationships reveal different dominant factors (partial evaporation and the selection), and canopy water flowpaths control such differences. This study provides useful insights into the spatial variability of TF isotopic composition and improves our understanding of the physical processes of interception through canopy passage.  相似文献   
113.
Soil bulk density (ρb) is commonly treated as static in studies of land surface dynamics. Magnitudes of errors associated with this assumption are largely unknown. Our objectives were to (a) quantify ρb effects on soil hydrologic and thermal properties and (b) evaluate effects of ρb on surface energy balance and heat and water transfer. We evaluated 6 soil properties, volumetric heat capacity, thermal conductivity, soil thermal diffusivity, water retention characteristics, hydraulic conductivity, and vapour diffusivity, over a range of ρb, using a combination of 6 models. Thermal conductivity, water retention, hydraulic conductivity, and vapour diffusivity were most sensitive to ρb, each changing by fractions greater than the associated fractional changes in ρb. A 10% change in ρb led to 10–11% change in thermal conductivity, 6–11% change in saturated and residual water content, 49–54% change in saturated hydraulic conductivity, and 80% change in vapour diffusivity. Subsequently, 3 field seasons were simulated with a numerical model (HYDRUS‐1D) for a range of ρb values. When ρb increased 25% (from 1.2 to 1.5 Mg m?3), soil temperature variation decreased by 2.1 °C in shallow layers and increased by 1 °C in subsurface layers. Surface water content differed by 0.02 m3 m?3 for various ρb values during drying events but differences mostly disappeared in the subsurface. Matric potential varied by >100 m of water. Surface energy balance showed clear trends with ρb. Latent heat flux decreased 6%, sensible heat flux increased 9%, and magnitude of ground heat flux varied by 18% (with a 25% ρb increase). Transient ρb impacted surface conditions and fluxes, and clearly, it warrants consideration in field and modelling investigations.  相似文献   
114.
— We have evaluated how the parameters prescribing the slip-dependent constitutive law are affected by temperature and effective normal stress, by conducting the triaxial fracture experiments on Tsukuba-granite samples in seismogenic environments, which correspond to a depth range to 15 km. The normalized critical slip displacement D c almost remains constant below 300oC (insensitive to both temperature and effective normal stress σ n eff); D c increases with increasing temperature above 300 °C, and the rate of D c increase with temperature tends to be largest at higher σ n eff. The breakdown stress drop Δτ b for the granite at constant σ n eff is roughly 80 MPa below 300 °C, and does not depend on σ n eff. Above 300 °C, Δτ b decreases gradually with increasing temperature, and the rate of Δτ b reduction with temperature increases at higher σ n eff. The peak shear strength τ p increases nearly linearly with increasing σ n eff below 300 °C. However, τ p becomes lower above 300 °C, deviating from the linear relation extrapolated from below 300 °C. This is consistent with the onset of crystal plastic deformation mechanisms of Tsukuba granite.  相似文献   
115.
Zircon is resistant to alteration over a wide range of geological environments, and isotopic ratios within the mineral provide constraints on ages and their parental magmas. Trace element compositions in zircon are also expected to reflect those of their parent magmas, and have a potential as essential indicators for their host rocks. Because most detrital zircons that accumulate at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. This study employs the conventional classification scheme of granites (I‐, S‐, M‐, and A‐types). To clarify geochemical characteristics of zircons in A‐type granites, trace element compositions of zircons extracted from the A‐type Ashizuri granitoids were examined. Zircons from the Ashizuri granitoids commonly show enrichments of heavy rare earth elements and positive Ce anomalies, indicating that these zircons were igneous in origin. In addition, zircons in these A‐type granites are characterized by enrichments of Nb, Y, Ta, Th, and U and strong negative Eu anomalies, which exhibit good positive correlations with those in their whole rocks. This fact indicates that these signatures in zircons reflect well those in their parental bodies and are useful in identifying zircons derived from A‐type granite. Based on compilations of available data, zircons from A‐type granites can be clearly discriminated from other‐types of granites within Nb/Sr–Eu anomaly, U/Sr–Eu anomaly, Nb/Sr–U/Sr, and Nb/Sr–Ta/Sr cross‐plots. All indices used in these diagrams were selected based on the geochemical features of both zircon and whole rock of A‐type granites. Application of these discrimination diagrams to detrital zircons will likely provide further insights. For example, some Hadean detrital zircons plot in similar fields to A‐type granites, implying the existence of A‐type magmatism in the Earth's earliest history.  相似文献   
116.
An emission pathway for stabilization at 6?Wm?2 radiative forcing   总被引:1,自引:0,他引:1  
Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm?2) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO2 and N2O, are downscaled to facilitate transfer to climate models.  相似文献   
117.
TheEarlySummerSeasonalChangeofLarge-scaleCirculationoverEastAsiaandItsRelationtoChangeofTheFrontalFeaturesandFrontalRainfallE...  相似文献   
118.
l. IntroductionThe cIassicaI definition of bi--directional reflectance--distribution function (BRDF) is aderivative, distribution function, relatlng the irradiance incident from one given direction tolts contribution to the radiance renected in another direct1on (N1codemus et al., l977).f r (0,, rp,; 0,, rp, )= dL, (0,, P,; 0,, 9,; E, )/ dE, (0,, 9,) [sr-- 1 ], (l)where 0 (zenith angle) and 9 (azimuth angle) together indicate a direction, the subscr1pt i indi-cates quantities associated wi…  相似文献   
119.
Size-separated aerosol number concentrations and water-soluble constituents were measured in Toyama, the Hokuriku district, near the coast of the Japan Sea, during the spring and summer in 2003. The number concentrations of coarse particles were significantly high in April, which was due to Asian dust events called Kosa in Japanese. Particulate nssCa2+, which is mostly present in the coarse-mode particles, was significantly high in April. On the other hand, the concentrations of NH4+ and nssSO42−, which mainly exist as the accumulation-mode particles were not high in April. The mass-size distributions of water-soluble constituents were compared with the size-separated number concentrations of particles. Backward trajectory analysis was also employed to examine the transport process of the air mass in Toyama.  相似文献   
120.
Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号