首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   8篇
  国内免费   4篇
测绘学   1篇
大气科学   8篇
地球物理   35篇
地质学   35篇
海洋学   52篇
天文学   35篇
综合类   2篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   5篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   14篇
  2007年   8篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有173条查询结果,搜索用时 843 毫秒
61.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   
62.
Particular solutions to the problem of horizontal flow of water and air through homogeneous porous media are derived and regularity properties of the solutions are presented. It is found that a singularity occurs in the solutions at the wetting fronts. Effects of air flow on water flow are discussed.  相似文献   
63.
64.
Four amphibolite facies pelitic gneisses from the western Mongolian Altai Range exhibit multistage aluminosilicate formation and various chemical‐zoning patterns in garnet. Two of them contain kyanite in the matrix and sillimanite inclusions in garnet, and the others have kyanite inclusions in garnet with sillimanite or kyanite in the matrix. The Ca‐zoning patterns of the garnet are different in each rock type. U–Th–Pb monazite geochronology revealed that all rock units experienced a c. 360 Ma event, and three of them were also affected by a c. 260 Ma event. The variations in the microstructures and garnet‐zoning profiles are caused by the differences in the (i) whole‐rock chemistry, (ii) pressure conditions during garnet growth at c. 360 Ma and (iii) equilibrium temperatures at c. 260 Ma. The garnet with sillimanite inclusions records an increase in pressure at low‐P (~5.2–7.2 kbar) and moderate temperature conditions (~620–660 °C) at c. 360 Ma. The garnet with kyanite inclusions in the other rock types was also formed during an increase in pressure but at higher pressure conditions (~7.0–8.9 kbar at ~600–640 °C). The detrital zircon provenance of all the rock types is similar and is consistent with that from the sedimentary rocks in the Altai Range, suggesting that the provenance of all the rock types was a surrounding accretionary wedge. One possible scenario for the different thermal gradient is Devonian ridge subduction beneath the Altai Range, as proposed by several researchers. The subducting ridge could have supplied heat to the accretionary wedge and elevated the geotherm at c. 360 Ma. The differences in the thermal gradients that resulted in varying prograde P–T paths might be due to variations in the thermal regimes in the upper plate that were generated by the subducting ridge. The c. 260 Ma event is characterized by a relatively high‐T/P gradient (~25 °C km?1) and may be due to collision‐related granitic activity and re‐equilibrium at middle crustal depths, which caused the variations in the aluminosilicates in the matrix between the rock units.  相似文献   
65.
In this study, the three‐dimensional (3‐D) microstructure of 48 Itokawa regolith particles was examined by synchrotron microtomography at SPring‐8 during the preliminary examination of Hayabusa samples. Moreover, the 3‐D microstructure of particles collected from two LL6 chondrites (Ensisheim and Kilabo meteorites) and an LL5 chondrite (Tuxtuac meteorite) was investigated by the same method for comparison. The modal abundances of minerals, especially olivine, bulk density, porosity, and grain size are similar in all samples, including voids and cracks. These results show that the Itokawa particles, which are surface materials from the S‐type asteroid Itokawa, are consistent with the LL chondrite materials in terms of not only elemental and isotopic composition of the minerals but also 3‐D microstructure. However, we could not determine whether the Itokawa particles are purely LL5, LL6, or a mixture of the two. No difference between the particles collected from Rooms A and B of the sample chamber, corresponding to the sampling sequence of the spacecraft's second and first touchdowns, respectively, was detected because of the statistically small amount of particles from Room B.  相似文献   
66.
The orbit of Comet C/2002C1 (Ikeya–Zhang) has a similarity to that of Comet C/1661C1 (Hevelius), and the numerical integration of the motion of C/2002C1 backward shows a possible linkage of those two comets. Thus, 153P/Ikeya–Zhang was designated a periodic comet. Historical records of comets in 877 and 1273 are also identified with Comet 153P/Ikeya–Zhang. The integrated orbital elements during 77 and 2362, and historical records of the comet are also presented and discussed.  相似文献   
67.
The author proposes the possibility to observe the HI column density oscillation in small scales (∼ AU-scale). If such variance of the column density were to be observed, he would suggest that the observational results show the existence of some type of waves in two-phase gas mixture. Such wave is known to be a void wave in the context of multi-phase fluid dynamics. If the variation of HI column density is representation of the void wave, we can also expect the HII density variations have anti-correlation to the HI density fluctuations, in the context of classical two phase model of interstellar medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
68.
69.
We have examined the evolution of merged low-mass double white dwarfs that become luminous helium stars. We have approximated the merging process by the rapid accretion of matter, consisting mostly of helium, on to a carbon–oxygen (CO) white dwarf. After a certain mass is accumulated, a helium shell flash occurs, the radius and luminosity increase and the star becomes a yellow giant. Mass accretion is stopped artificially when the total mass reaches a pre-determined value. When the mass above the helium-burning shell becomes small enough, the star evolves blueward almost horizontally in the Hertzsprung–Russell diagram. The theoretical models for the merger of a 0.6-M CO white dwarf with a 0.3-M He white dwarf agree very well with the observed locations of extreme helium stars in the  log  T eff–log  g   diagram, with their observed rates of blueward evolution, and with luminosities and masses obtained from their pulsations. Together with predicted merger rates for  CO+He  white dwarf pairs, the evolutionary time-scales are roughly consistent with the observed numbers of extreme helium stars. Predicted surface carbon and oxygen abundances can be consistent with the observed values if carbon and oxygen produced in the helium shell during a previous asymptotic giant branch phase are assumed to exist in the helium zone of the initial CO white dwarfs. These results establish the  CO+He  white dwarf merger as the best, if not only, viable model for the creation of extreme helium stars and, by association, the majority of R Coronae Borealis stars.  相似文献   
70.
This paper describes an approach to simulate a seven-tier stack consisting of scaled model of a 20 ft ISO freight container and its linking connectors, denominated twist locks, subjected to dynamical load induced by its base. The physical (dimensions, mass, and moments of inertia) and structural (longitudinal, transversal and torsional stiffness) characteristics of the scaled models were decided based on two dimensionless numbers: ratios between gravity force and inertia force, and elastic force divided by inertia force, through experimental and numerical analysis. A series of experiments with controlled parameters were performed using a shaking table test to understand the effects of each variable in the container stack dynamics and present enough data to validate the numerical model. The results of this study indicate that the numerical model built is a promising tool for further study. Moreover, the model is able to predict conditions close to real situations faced by container stacks while storage on a ship's deck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号