首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   19篇
地球物理   9篇
海洋学   15篇
天文学   8篇
自然地理   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有55条查询结果,搜索用时 171 毫秒
31.
Kyuhyun Byun  Minha Choi 《水文研究》2014,28(7):3173-3184
Accurate estimation of snow water equivalent (SWE) has been significantly recognized to improve management and analyses of water resource in specific regions. Although several studies have focused on developing SWE values based on remotely sensed brightness temperatures obtained by microwave sensor systems, it is known that there are still a number of uncertainties in SWE values retrieved from microwave radiometers. Therefore, further research for improving remotely sensed SWE values including global validation should be conducted in unexplored regions such as Northeast Asia. In this regard, we evaluated SWE through comparison of values produced by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR‐E) from December 2002 to February 2011 with in situ SWE values converted from snow‐depth observation data from four regions in the South Korea. The results from three areas showed similarities which indicated that the AMSR‐E SWE values were overestimated when compared with in situ SWE values, and their Mean Absolute Errors (MAE) by month were relatively small (1.1 to 6.5 mm). Contrariwise, the AMSR‐E SWE values of one area were significantly underestimated when compared with in situ SWE values and the MAE were much greater (4.9 to 35.2 mm). These results were closely related to AMSR‐E algorithm‐related error sources, which we analyzed with respect to topographic characteristics and snow properties. In particular, we found that snow density data used in the AMSR‐E SWE algorithm should be based on reliable in situ data as the current AMSR‐E SWE algorithm cannot reflect the spatio‐temporal variability of snow density values. Additionally, we derived better results considering saturation effect of AMSR‐E SWE. Despite the demise of AMSR‐E, this study's analysis is significant for providing a baseline for the new sensor and suggests parameters important for obtaining more reliable SWE. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
32.
On 21 September 2010, heavy rainfall with a local maximum of 259 mm d-1occurred near Seoul, South Korea. We examined the ability of the Weather Research and Forecasting(WRF) model in reproducing this disastrous rainfall event and identified the role of two physical processes: planetary boundary layer(PBL) and microphysics(MPS) processes. The WRF model was forced by 6-hourly National Centers for Environmental Prediction(NCEP) Final analysis(FNL) data for 36 hours form 1200 UTC 20 to 0000 UTC 22 September 2010. Twenty-five experiments were performed, consisting of five different PBL schemes—Yonsei University(YSU), Mellor-Yamada-Janjic(MYJ), Quasi Normal Scale Elimination(QNSE),Bougeault and Lacarrere(Bou Lac), and University of Washington(UW)—and five different MPS schemes—WRF SingleMoment 6-class(WSM6), Goddard, Thompson, Milbrandt 2-moments, and Morrison 2-moments. As expected, there was a specific combination of MPS and PBL schemes that showed good skill in forecasting the precipitation. However, there was no specific PBL or MPS scheme that outperformed the others in all aspects. The experiments with the UW PBL or Thompson MPS scheme showed a relatively small amount of precipitation. Analyses form the sensitivity experiments confirmed that the spatial distribution of the simulated precipitation was dominated by the PBL processes, whereas the MPS processes determined the amount of rainfall. It was also found that the temporal evolution of the precipitation was influenced more by the PBL processes than by the MPS processes.  相似文献   
33.
Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) were measured in 32 species inhabiting the Yellow Sea to assess their bioaccumulation potentials. The concentrations in these samples were lower than those reported for other countries or locations. Relatively high levels of BDE 209 in biota suggest an ongoing source of deca-BDE technical mixing within the Yellow Sea. The accumulation profiles of PCBs were uniform between species, but the concentrations of OCPs and PBDEs varied widely. Pelagic and benthic food-chain components were separated by their δ13C values. Significant positive correlations between δ15N and PCB 153, PCB 138, p,p′-DDE, oxy-chlordane, and trans-nonachlordane were found only for pelagic consumers, indicating that the pelagic food chain is an important bioaccumulation pathway for selected PCB and OCP compounds. The other compounds did not show any biomagnification through benthic and pelagic food chains, suggesting the lower bioaccumulation potentials of these contaminants.  相似文献   
34.
In the deepest region of Korea Strait, the surface temperature is highest in August (lowest in March), while the near-bottom temperature is lowest in September (highest in May). Cross-spectral analysis of the monthly temperature data between the two layers shows high coherence at the annual frequency with phase of 154°. Why and how does such a nearly opposite phasing occur between the surface and the near-bottom temperatures there? This study aims at answering these questions using historical and recently observed data.Cold and relatively fresh subsurface water flowing southward along the east coast of Korea and, known as the North Korean Cold Water (NKCW), becomes noticeable in April near the Sokcho coast. The zonal temperature gradient there is largest around June. The width of the NKCW becomes larger from April to August. After October, the NKCW retreats back toward the coast. The southward movement of the NKCW is thus strong over a period of six to seven months and weak in winter, especially in February. The NKCW flows southward relatively quickly along the coast in April to October and arrives at the Ulleung Basin within one to two months. Because of the sill between the Ulleung Basin and Korea Strait, this water cannot continue to flow to south, but piles up for about two to three months before it moves over the sill. The convergence of the subsurface cold water in the Ulleung Basin displaces the isopycnals upward and this water then intrudes over the sill along the isopycnals. This explains why in April or May, when this water appears noticeably at the Sokcho coast, the near-bottom water in Korea Strait is warmest and in August or September when the NKCW, which is piled up enough at the southern end of the Ulleung Basin, intrudes to Korea Strait, the near-bottom temperatures there are at their lowest.The origin of the NKCW seems to be the water of salinity less han 34.1 psu and surface density of 27σθ or higher, which sinks in the northwestern East Sea in January-March. The sinking of the water results from surface cooling in winter and is intensified due to the strong negative windstress curl. The cold and relatively fresh water, formed in the northwestern East Sea, is hypothesized to flow to the Ulleung Basin along three major paths, along the east coast of Korea, through the channel north of Ulleung-do Island, and through the channel between Ulleung-do and Dok-do Islands.  相似文献   
35.
We compare insolation results calculated from two well-known empirical formulas (Seckel and Beaudry’s SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W m-2 in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the ‘Sun-Earth distance factor (f)’, a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W m-2 during summer due to a decrease in thef value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison within situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.  相似文献   
36.
This study aims to improve the forecasting skill for freezing precipitation. A total of 102 freezing precipitation cases were collected in South and North Korea from 2001 onwards. Temperature fields on the ground and in the atmosphere, vertical temperature profiles, geopotential fields, thickness fields and their spatiotemporal variations, and their combinations using the predominant precipitation-type nomograms (P-type nomograms) were classified and investigated to determine whether or not these data could be used as predictors. Results show that 1) the combination of the thicknesses of 1000-850 hPa and 850-700 hPa is recommended for the P-type nomograms for Korea, which is different from that used in the United States in threshold values; 2) 35 out of 72 synoptic situations are possible conditions for freezing precipitation; and 3) 3 groups out of those 35 situations, i.e., the 1000 hPa warmfront group, the mid-level southerly category of 850 hPa, and the mid-layer warm type in the vertical temperature profile, show the greatest frequency. Freezing precipitation occurs only in a small part of a possible area. Therefore, despite the increasing observations in the year-on-year trend, only a few of the cases have been detected. The possibility of observation errors is also one of the biggest problems. Therefore, the need for new equipment, such as a freezing rain detector (FRAD), to detect the phenomenon automatically is required and proposed. A denser observing system of FRADs and an ultra-fine gridded numerical model are suggested as a solution for the prediction of freezing precipitation.  相似文献   
37.
Like other continental climatic regions Korea has a period around the spring when agricultural activities are interrupted frequently by a shortage of available water resources during the season. This season, which is termed the Little Water Season (LIWAS) in this study, has important implications for many socio-economic activities but the scientific definition of this season remains vague. In this study, the onset and termination dates, as well as the characteristics of the LIWAS have been defined based on the Available Water Resources Index (AWRI). Based on the proposed definition of LIWAS, the implications on hydrological conditions over a range of geographic scales and their inter-annual variations on the water resource environments in Korea have been assessed. To develop an appropriate index for LIWAS based on AWRI, the criterion value (CV) for LIWAS was set as the lowest 25th percentile of the AWRI values averaged for 30 years (1981-2010). Therefore, the Little Water Season for Korea (LIWAS_K) was considered as the period when the daily averaged AWRIs were successively lower than the CV (143.7 mm). Based on this, the mean onset and end date of LIWAS_K, was 9 February and 11 May which also reflected the period in the spring season when the available water resources are expected to the lowest. Moreover, a number of seasonal characteristics of the water availability during the LIWAS, such as the Little Water Intensity (LWI), Water Deficit Amount (WDA) and Water Deficit Intensity (WDI) have been defined for the particular study region. Based on our results, we aver that the proposed season classification of the LIWAS can be better analyzed using the concept of usable water resources as a classification of dry period instead of using temperature and raw rainfall datasets.  相似文献   
38.
39.
As part of the search for the “dark molecular gas (DMG),” we report on the results of HCO+\(J=1\mbox{--}0\) absorption observations toward nine bright extragalactic millimeter wave continuum sources. The extragalactic sources are at high Galactic latitudes (\(|b| > 10^{\circ} \)) and seen at small extinction (\(E(B - V)\lesssim 0.1\) mag). We have detected the HCO+ absorption lines toward two sources, B0838+133 and B2251+158. The absorption toward B2251+158 was previously reported, while the absorption toward B0838+133 is a new detection. We derive hydrogen column densities or their upper limits toward the nine sources from our observations and compare them to those expected from CO line emission and far-infrared dust continuum emission. Toward the seven sources with no HCO+ detection, CO emission has not been detected, either. Thus the sight lines are likely to be filled with almost pure atomic gas. Toward the two sources with HCO+ detection, CO emission has been also detected. Comparison of the H2 column densities from HCO+ absorption and CO emission suggests a non-negligible amount of DMG toward B0838+133.  相似文献   
40.
Droughts in the East Asian region (105–150°E, 20–50°N) are quantified using the effective drought index (EDI) over a period of 43 years, from 1962 to 2004, and the East Asian region was classified into six subregions on the basis of similarity in drought climate: (D1) South China; (D2) lower region of the Yangtze River, South Korea, and Central/South Japan; (D3) Central China and North Korea; (D4) Northwest China and middle region of the Yangtze River; (D5) North China; and (D6) Northeast China and North Japan. The EDI time series was then summarized for the different drought subregions and a drought map was created that shows the spatiotemporal characteristics of regional drought occurrence in East Asia. The map shows that in subregions, D1, D2, D3, D4, D5, and D6, there were 50 (11.63 per decade), 36 (8.37 per decade), 30 (6.98 per decade), 28 (6.51 per decade), 29 (6.74 per decade), and 33 (7.67 per decade) drought occurrences, respectively. The most common characteristic of droughts in the subregions is that short-term droughts (<200 days) which mainly occur in spring and summer, whereas long-term droughts (≥200 days) mainly occur in autumn and winter. D1 shows the highest frequency of short-term droughts. Short-term droughts occur more frequently than long-term droughts in D2 and D3, but D4 and D6 showed a higher frequency of long-term droughts than short-term droughts. D5 showed a similar frequency of short- and long-term droughts. Drought onset dates are evenly distributed throughout the year for D1, D2, and D3, but distributed mostly in spring and summer in D4, D5, and D6. All the differences are linked to variations in the precipitation cycle of each subregion. In terms of annual variations in drought occurrence, D2 showed weakening droughts (the annual lowest EDI shows a positive trend), whereas the other subregions showed intensifying droughts (the annual lowest EDI shows a negative trend). The greatest intensifying trend was observed in D5, followed by D3, D6, D4, and D1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号