首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  国内免费   15篇
大气科学   24篇
地球物理   15篇
地质学   29篇
海洋学   11篇
天文学   2篇
自然地理   5篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   10篇
  2008年   6篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1943年   1篇
  1941年   2篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
  1932年   1篇
排序方式: 共有86条查询结果,搜索用时 125 毫秒
61.
The life habits and microhabitat selection of speleophilic gobiid fishes were investigated on the Balearic Island of Ibiza (western Mediterranean Sea). Corcyrogobius liechtensteini (Kolombatović, 1891) was the most frequent species within submarine crevices, cavities and caves. Didogobius splechtnai Ahnelt & Patzner, 1995 co-occurred with C. liechtensteini in several cases but showed a clear spatial separation based on a different microhabitat preference. The microhabitat selection of both species was confirmed by habitat-choice experiments in anaquarium. Corcyrogobius liechtensteini was frequent in depths between 5 m and 25 m and attained abundances of 14.2 individuals · m−2. This species inhabited the ceilings and upper parts of the walls within the caves. D. splechtnai was mainly found between 7 m and 11 m and showed abundances of approximately 2 indivi-duals · m−2. This species occupied the fine sediment bottoms in the innermost parts of crevices and caves. The growth and the maximum age of both species were determined by length-frequency distributions. The overall sex ratio from catches of three different years are given for C. liechtensteini .  相似文献   
62.
Due to its restricted connection with the Indian Ocean, the desert-enclosed Red Sea is extremely sensitive to global sea level changes and thus ideally suited for paleoceanographic studies of what occurred during the last glaciation. The understanding of its glacial history is, however, still limited. A serious obstacle to obtain satisfactory paleoecological information has been the rarity of microfossil proxy species caused by high salinities. Here, we present a continuous and well-dated calcareous nannoplankton record from the northern Red Sea, covering the interval from 60–14.5 ka BP. Our investigation shows that the composition of the calcareous nannoplankton community varied between  32 ka BP and 14.5 ka BP in response to rapid environmental changes which are closely correlated to climatic fluctuations described from the North Atlantic region. Heinrich events H3, H2 and H1 are dominated by Emiliania huxleyi. Gephyrocapsa oceanica and especially Gephyrocapsa ericsonii are abundant between H3–H2 and H2–H1. A less pronounced response of the calcareous nannoplankton to the high latitudinal climatic oscillations is documented prior to  32 ka BP, suggesting that a strong atmospheric coupling between the northern Red Sea and the North Atlantic realm was established in the late Marine Isotope Stage 3. In contrast to the previously held view of a sea level related salinity increase as the major cause for changes of the plankton communities within the glacial Red Sea, we interpret the documented variations as being caused by local hydrographic changes under the atmospheric control from the extratropics. Temperature changes and especially variations of the water stratification appear to be critical selective factors for the calcareous nannoplankton composition.  相似文献   
63.
A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.  相似文献   
64.
The flow of dense water in a V-shaped laboratory-scale canyon is investigated by using a non-hydrostatic numerical ocean model with focus on the effects of rotation. By using a high-resolution model, a more detailed analysis of plumes investigated in the laboratory (Deep-Sea Res I 55:1021–1034 2008) for laminar flow is facilitated. The inflow rates are also increased to investigate plume structure for higher Reynolds numbers. With rotation, the plumes will lean to the side of the canyon, and there will be cross-canyon geostrophic currents and Ekman transports. In the present study, it is found that the cross-canyon velocities are approximately 5 % of the down-canyon velocities over the main body of the plume for the rotational case. With rotation, the flow of dense water through the body of the plume and into the plume head is reduced. The plume head becomes less developed, and the speed of advance of the head is reduced. Fluid parcels near the top of the plume will to a larger extent be left behind the faster flowing dense core of the plume in a rotating system. Near the top of the plume, the cross-canyon velocities change direction. Inside the plume, the cross-flow is up the side of the canyon, and above the interface to the ambient there is a compensating cross-flow down the side of the canyon. This means that parcels of fluid around the interface become separated. Parcels of fluid around the interface with small down-canyon velocity components and relative large cross-canyon components will follow a long helix-like path down the canyon. It is found that the entrainment coefficients often are larger in the rotational experiments than in corresponding experiments without rotation. The effects of rotation and higher inflow rates on the areal patterns of entrainment velocities are demonstrated. In particular, there are bands of higher entrainment velocities along the lateral edges of the plumes in the rotational cases.  相似文献   
65.
In the present study, the authors investigated the relationship between the Arctic Oscillation (AO) and the high-frequency variability of daily sea level pressures in the Northern Hemisphere in winter (November through March), using NCEP/NCAR reanalysis datasets for the time period of 1948/49-2000/01.High-frequency signals are defined as those with timescales shorter than three weeks and measured in terms of variance, for each winter for each grid. The correlations between monthly mean AO index and high-frequency variance are conducted. A predominant feature is that several regional centers with high correlation show up in the middle to high latitudes. Significant areas include mid- to high-latitude Asia centered at Siberia, northern Europe and the middle-latitude North Atlantic east of northern Africa. Theirs trong correlations can also be confirmed by the singular value decomposition analysis of covariance between mean SLP and high-frequency variance. This indicates that the relationship of AO with daily Sea Level Pressure (SLP) is confined to some specific regions in association with the inherent atmospheric dynamics. In middle-latitude Asia, there is a significant (at the 95% level) trend of variance of-2.26% (10yr)^-1. Another region that displays a strong trend is the northwestern Pacific with a significant rate of change of 0.80% (10 yr)^-1. If the winter of 1948/49, an apparent outlier, is excluded, a steady linear trend of 1.51% (10 yr)^-1 shows up in northern Europe. The variance probability density functions (PDFs) are found to change in association with different AO phases. The changes corresponding to high and low AO phases, however, are asymmetric in these regions. Some regions such as northern Europe display much stronger changes in high AO years, whereas some other regions such as Siberia show a stronger connection to low AO conditions. These features are supported by ECMWF reanalysis data. However, the dynamical mechanisms involved in the AO-high frequency SLP variance connection have not been well understood,and this needs further study.  相似文献   
66.
通过对挪威卑尔根全球大气-海洋-海冰耦合模式300a控制积分结果进行交叉子波分析,揭示了东亚夏季风(EASM)与同期Nio3区(90°W~150°W,5°S~5°N)海洋表面温度异常的相关关系在长期变化中是不稳定的,呈现出明显的阶段性特征.气候要素场在二者联系的紧密(HCP)和微弱(LCP)时期差别显著,在HCP时期,西北太平洋对流层低层出现一对耦合的异常气旋和反气旋性环流系统;东南亚地区对流层低层表现为强东风异常,风速的年际变率加大;热带西太平洋对流层温度和位势高度场的年际变率普遍加强.此外,中国夏季降水与同期Nio3区海洋表面温度异常的相关关系在上述两种时期也存在较大差别.  相似文献   
67.
利用卑尔根海洋-大气-海冰耦合气候模式 (Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流 (Atlantic Meridional Overturning Circulation, 简称AMOC) 的响应及其机制, 着重讨论了海表热力性质、 北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征.结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复.同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复.恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复.研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强.  相似文献   
68.
The climate changes that occured following the volcanic eruption of Mount Pinatubo in the Phillippines on 15 June 1991 have been simulated using the ARPEGE atmosphere general circulation model (AGCM). The model was forced by a reconstructed spatial-time distribution of stratospheric aerosols intended for use in long climate simulations. Four statistical ensembles of the AGCM simulations with and without volcanic aerosols over a period of 5 years following the eruption have been made, and the calculated fields have been compared to available observations. The model is able to reproduce some of the observed features after the eruption, such as the winter warming pattern that was observed over the Northern Hemisphere (NH) during the following winters. This pattern was caused by an enhanced Equator-to-pole temperature gradient in the stratosphere that developed due to aerosol heating of the tropics. This in turn led to a strengthening of the polar vortex, which tends to modulate the planetary wave field in such a way that an anomalously positive Arctic Oscillation pattern is produced in the troposphere and at the surface, favouring warm conditions over the NH. During the summer, the model produced a more uniform cooling over the NH.  相似文献   
69.
It has been reported recently that the simulated Atlantic meridional overturning circulation(AMOC) using the coupled Bergen climate model(BCM) showed initial intensity declines followed by gradual recoveries over a 150-year enhanced freshwater input experiment.Stratification-dependent oceanic diapycnal mixing has been hypothesized as a reason for the simulated recovery of the AMOC.This study investigated the role of diapycnal mixing in transient responses of simulated AMOCs.Our results showed that stratification-dependent diapycnal mixing can cause stronger upwelling of deep water in the tropical Atlantic than that produced under conditions of fixed diapycnal mixing.Moreover,simulated AMOCs were more sensitive to active stratification-dependent diapycnal mixing than fixed mixing.However,stratification-dependent diapycnal mixing cannot be conclusively singled out as the critical cause of the recoveries of simulated AMOCs under enhanced-freshwater inputs.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号