This article provides insights into the role of institutions involved in climate governance working towards a future low-carbon society at the national level, within the global climate change governance architecture. Specifically, it contributes to understanding the fragmented governance of energy efficiency policy in developing countries by focussing on Vietnam’s building sector, identifying key institutions related to underlying discourses, national and international power relations, resource distribution and coalitions. It uses the case of baseline setting in developing Nationally Appropriate Mitigation Actions (NAMAs) to illustrate institutional dynamics, nationally and transnationally, as well as to question whether demands for baseline setting achieve the ideal trade-off between actual GHG emissions reduction and institutionalized demands for accountability. The analysis reveals that, in addition to domestic efforts and challenges, the international agenda greatly influences the energy efficiency policy arena. The article presents lessons to be learnt about policy processes from the specific Vietnamese case, reflecting on the role of international actors and discourses in it. Finally, it argues for the abolition of baselines in favour of adequate monitoring and evaluation, from the perspective that requirement for deviation from fictitious baselines is unproductive and only serves an international techno-managerial discourse.
POLICY RELEVANCE
Baseline establishment is commonly considered an initial step in developing NAMAs, in order to facilitate the demonstration of a deviation from such baselines. The requirement to produce baselines is traditionally not questioned by policy practitioners. Thus, significant development resources are allocated to the establishment of baselines and the bridging of data gaps, often without consideration as to whether baselines are a necessary instrument for NAMA implementation. We suggest omitting the lengthy and resource-consuming practice of establishing baselines and recommend proceeding forthwith to the planning and implementation of mitigation and energy efficiency policies. As conditions vary significantly in different contexts, it would be more appropriate to measure the initial situation, establishing the ‘base point’, and monitor development from that point. The present article might serve as motivation for policymakers to question traditional approaches to policy development and consider alternatives to maximize the cost efficacy of NAMA programmes and facilitate their implementation. 相似文献
The paper presents the results of a combined soil and vegetation survey in Ro?ia Montan? mining area (western Romania), famous for its gold and silver deposits, extensively exploited over the last 2,000 years. As the ore extraction has ceased in 2006 and new operations could be initiated in the future, the study contributes to the definition of the environmental baseline. Samples of topsoil and leaves of the tree species Betula pendula and Carpinus betulus have been collected from the inside and outside of the mining area, on a total surface of more than 60 km2. The pH and heavy metal concentrations (Cd, Cr, Cu, Ni, Pb, and Zn) have been measured on 262 soils/sediments samples, revealing the predominantly acidic character of soils and the generally low contents of heavy metals. Stronger acidity and higher contents of heavy metals have been noticed in the proximity of the mining site, on the tailings and waste rock dumps, and along the streams with acid water. More than 100 leaf samples have been analysed for the same heavy metals as soils and also for chlorophyll fluorescence and pigment concentrations. B. pendula has shown a particular ability to concentrate Zn in leaves, at levels that may greatly exceed the Zn content in the corresponding soil samples. The correlation between the heavy metal contents in leaves and in soils, in most of the cases, is not very strong, presumably in relation to the low concentrations in soils. The chlorophyll concentration in leaves of B. pendula slightly diminishes on soils with low pH. 相似文献
The rheology of debris flows is difficult to characterize owing to the varied composition and to the uneven distribution of the components that may range from clay to large boulders, in addition to water. Few studies have addressed debris flow rheology from observational, experimental, and theoretical viewpoints in conjunction. We present a coupled rheological‐numerical model to characterize the debris flows in which cohesive and frictional materials are both present. As a first step, we consider small‐scale artificial debris flows in a flume with variable percentages of clay versus sand, and measure separately the rheological properties of sand–clay mixtures. A comparison with the predictions of a modified version of the numerical model BING shows a reasonable agreement between measurements and simulations. As application to a field case, we analyse a recent debris flow that occurred in Fjærland (Western Norway) for which much information is now available. The event was caused by a glacial lake outburst flood (GLOF) originating from the failure of a moraine ridge. In a previous contribution (Breien et al., Landslides, 2008 , 5: 271–280) we focused on the hydrological and geomorphological aspects. In particular we documented the marked erosion and reported the change in sediment transport during the event. In contrast to the laboratory debris flows, the presence of large boulders and the higher normal pressure inside the natural debris flow requires the introduction of a novel rheological model that distinguishes between mud‐to–clast supported material. We present simulations with a modified BING model with the new cohesive‐frictional rheology. To account for the severe erosion operated by the debris flow on the colluvial deposits of Fjærland, we also suggest a simple model for erosion and bulking along the slope path. Numerical simulations suggest that a self‐sustaining mechanism could partly explain the extreme growth of debris flows running on a soft terrain. 相似文献
Glacial surges in Svalbard are protracted and characterized by individual dynamic evolution, in contrast to many other areas, which calls for a subdivision of the classic two‐phased surge cycle. A dominating part of the ice masses seem to have a surge potential and this represents a considerable challenge for palaeoclimatic studies. Glaciological and geological models therefore need to be coupled. The issue is discussed with Fridtjovbreen glacier as an example. This ice mass is one of few glaciers studied throughout a surge cycle. It was active for 12 years (1991–2002) and represents the most protracted surge documented. The maximum advance rate was 4.2 m day?1, its maximum extent was reached after seven years, its run‐out distance was 4 km, and the relocated ice filled 5 km2 of the fjord. Intense subglacial thrusting occurred during various stages, including part of the ice‐front retreat, as shown by sub‐bottom profiling data from 2002. A six‐stage model is presented and processes are discussed with emphasis on the ice‐front retreat with transition to the quiescent phase. Although the surge mechanism itself is unrelated to climate, climatic conditions obviously play a major role in the course of a surge. During the surge, the ice mass made a dramatic impression in the landscape, but 10 years after the maximum extent, there is little onshore evidence of the event. 相似文献
At the end of August 2007, Venus, Earth and Ulysses were aligned within a few degrees. This unusual event gives the opportunity to attempt a coordinated study on the radial evolution of solar wind turbulence and coronal transients like CMEs between 0.7 and 1.4 AU. Interplanetary magnetic field data and moments of proton velocity distribution function such as density, speed and temperature are required for this programme and will be provided by ACE at Earth, Venus Express at Venus and Ulysses at 1.4 AU. This project has been recently proposed as a Coordinated Investigation Programme (CIP35) for the International Heliophysical Year. 相似文献
Summary A coalification data set from the first seam of the Rosice-Oslavany coal district in the Boskovice furrow was used to estimate the temperature gradient prevailing within the furrow during Autunian sedimentation. An appreciable scatter of the data reflects the complicated history of the sedimentary region. The northern part of the district displays a higher degree of coalification. The results of the evaluation suggest that the region ceased to subside in the upper Autunian, and that the extent of the post-Autunian erosion does not exceed 500 metres. This version of the burial history, which is consistent with geological data, yields a temperature paleogradient of 76 mK/m for the northern part and of 72 mK/m for the southern part of the district. The gradients estimated are higher than those prevailing during the Carboniferous sedimentation in the Central Bohemian Basin (45 – 53 mK/m), lower than values found for the Ostrava Formation in the Upper Silesian Basin during its Namurian A sedimentation (about 95 mK/m), but comparable with values evaluated for the Karviná Formation of the same basin deposited during the Namurian B - C and Westphalian A (60 – 77 mK/m).Dedicated to the Memory of Professor Karel P 相似文献
Summary The magnification achieved with the standard sine-wave method using seismometers with the calibration and signal coils tightly wound on the same coil former can be erroneous at high frequencies due to the mutual inductance between both coils. An attempt was made to eliminate this influence from the calibration data. The application of theoretical equations was tested with a short-period digital seismograph.
ma¶rt;ama auau aa nu ¶rt;uu ¶rt;uu maauu m m m a u amma ua u a au u¶rt;mumu ¶rt; ua u auau am, u u a¶rt;m n¶rt;m umu. a ¶rt;aa nnma muam auau ¶rt;a. uu mmuu au u¶rt;a nu auauu mnu¶rt;u aa u anu.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir. 相似文献