首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  国内免费   1篇
大气科学   13篇
地球物理   16篇
地质学   20篇
海洋学   8篇
天文学   4篇
自然地理   7篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有68条查询结果,搜索用时 46 毫秒
61.
62.
63.
Optimization of sub-band coding method for seismic data compression   总被引:2,自引:0,他引:2  
Seismic data volumes, which require huge transmission capacities and massive storage media, continue to increase rapidly due to acquisition of 3D and 4D multiple streamer surveys, multicomponent data sets, reprocessing of prestack seismic data, calculation of post‐stack seismic data attributes, etc. We consider lossy compression as an important tool for efficient handling of large seismic data sets. We present a 2D lossy seismic data compression algorithm, based on sub‐band coding, and we focus on adaptation and optimization of the method for common‐offset gathers. The sub‐band coding algorithm consists of five stages: first, a preprocessing phase using an automatic gain control to decrease the non‐stationary behaviour of seismic data; second, a decorrelation stage using a uniform analysis filter bank to concentrate the energy of seismic data into a minimum number of sub‐bands; third, an iterative classification algorithm, based on an estimation of variances of blocks of sub‐band samples, to classify the sub‐band samples into a fixed number of classes with approximately the same statistics; fourth, a quantization step using a uniform scalar quantizer, which gives an approximation of the sub‐band samples to allow for high compression ratios; and fifth, an entropy coding stage using a fixed number of arithmetic encoders matched to the corresponding statistics of the classified and quantized sub‐band samples to achieve compression. Decompression basically performs the opposite operations in reverse order. We compare the proposed algorithm with three other seismic data compression algorithms. The high performance of our optimized sub‐band coding method is supported by objective and subjective results.  相似文献   
64.
65.
Particulate organic and black carbon concentrations in rain were determined in various source or remote regions, in order to gain information on the incorporation of atmospheric carbonaceous particles in hydrometeors. The analyses of rainwaters indicate that all the samples contained particles derived from combustion. Data obtained on a sample basis, show an important areal and temporal variability of the composition of rain carbonaceous particles, a variability which is reported to that of the black carbon to total carbon ratio, Cb/Ct, ranging from 10 to 72%. In addition to the fluctuations of the aerosol atmospheric burden, these variations may be related to alterations of the organic fraction of the particles or their involvement in in-cloud nucleation processes during atmospheric transport. Also, a comparison of the mean relative abundance of black carbon in aerosols and in rainwaters, gives evidence of a partial disappearance of the organic particles, a phenomenon which could be due to their dissolution when incorporated in the hydrometeors. Precipitation scavenging ratio values of black carbon particles, which range from 100 to 370, are similar to those found for sulphate anthropogenic aerosols. Due to their hygroscopic properties and mean size, black carbon aerosols could possibly trace the physico-chemical processes involved in the incorporation of fine combustion particles into hydrometeors. It is also suggested that smoke particles may act as cloud condensation nuclei (CCN). Consequently, emissions of particulates derived from combustion in some tropical or industrial regions could result locally in alteration of cloud albedo and precipitation regimes.  相似文献   
66.
The pitch-angle distributions in and near the loss cone, of ~ (100–200) and ~ (200–350) keV protons observed by the ESRO IB satellite during the period 7–15 October 1969 are presented. The data include periods of relative quiet as well as more disturbed geomagnetic conditions. Spatial characteristics and dynamics of the protons, both on the night-and dayside of the Earth are described. The actual pitch-angle distribution is interpreted as produced by wave-particle interactions, and the diffusion coefficient and lifetime against pitch angle scattering have been estimated from existing theories. During slightly disturbed conditions, the observations suggest an average random walk in pitch angle made by a particle during a crossing of the diffusion region of about one half of the loss cone half angle for 4 ? L ? 6. The lifetime against pitch angle scattering into the loss cone is found to be somewhat less than the charge exchange lifetime for these (100–350) keV protons. The spectral density of interacting waves is tentatively estimated to about 0·1 γ2Hz, and compares with estimates arrived at from completely different approaches.  相似文献   
67.
Knowledge about saturation and pressure distributions in a reservoir can help in determining an optimal drainage pattern, and in deciding on optimal well designs to reduce risks of blow‐outs and damage to production equipment. By analyzing time‐lapse PP AVO or time‐lapse multicomponent seismic data, it is possible to separate the effects of production related saturation and pressure changes on seismic data. To be able to utilize information about saturation and pressure distributions in reservoir model building and simulation, information about uncertainty in the estimates is useful. In this paper we present a method to estimate changes in saturation and pressure from time‐lapse multicomponent seismic data using a Bayesian estimation technique. Results of the estimations will be probability density functions (pdfs), giving immediate information about both parameter values and uncertainties. Linearized rock physical models are linked to the changes in saturation and pressure in the prior probability distribution. The relationship between the elastic parameters and the measured seismic data is described in the likelihood model. By assuming Gaussian distributed prior uncertainties the posterior distribution of the saturation and pressure changes can be calculated analytically. Results from tests on synthetic seismic data show that this method produces more precise estimates of changes in effective pressure than a similar methodology based on only PP AVO time‐lapse seismic data. This indicates that additional information about S‐waves obtained from converted‐wave seismic data is useful for obtaining reliable information about the pressure change distribution.  相似文献   
68.
Dai  Panxi  Gao  Yongqi  Counillon  Fran&#;ois  Wang  Yiguo  Kimmritz  Madlen  Langehaug  Helene R. 《Climate Dynamics》2020,54(9):3863-3878
Climate Dynamics - The version of the Norwegian Climate Prediction Model (NorCPM) that only assimilates sea surface temperature (SST) with the Ensemble Kalman Filter has been used to investigate...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号