首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   3篇
大气科学   4篇
地球物理   2篇
地质学   10篇
海洋学   2篇
天文学   2篇
自然地理   3篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2005年   3篇
排序方式: 共有23条查询结果,搜索用时 93 毫秒
21.
The current behaviour of selected climate proxies in Lake Baikal was assessed by remote sensing analyses of ‘Sea viewing Wide Field of view Sensor’ (SeaWiFS) satellite data. Suitable proxies include optically visible water constituents such as phytoplankton, suspended terrigenous matter and yellow substance. These limnological parameters reflect the present-day climate bioproductivity and the river discharge in the catchment area.A biological and geochemical ground truth data set for Lake Baikal was established with the help of members of the paleoclimate project ‘high-resolution CONTINENTal paleoclimate record in Lake Baikal’ (CONTINENT). For processing the SeaWiFS satellite data, the atmospheric correction was adapted to the case of Lake Baikal. Chlorophyll as a proxy for phytoplankton was quantified using global NASA ocean colour algorithms OC2 and OC4. In cases of no optical interferences by terrigenous input, the calculated chlorophyll concentrations in clear pelagic waters were within ±30% accuracy with the CONTINENT cruise data during the summers of 2001 and 2002. Within this range of accuracy, the SeaWiFS time series will be able to show the seasonal variations of chlorophyll of specified bio-optical provinces of Lake Baikal and of CONTINENT sites. In this study, the suspended matter as a proxy for the terrigenous input was calculated according to an empirical algorithm using ground truth data in the time frame of flooding events in summer 2001. The approach chosen correlates the suspended matter concentration with the remotely sensed parameter of ‘attenuation coefficient’ to account for the organic-rich terrigenous input that originates from the swampy watersheds.Seasonal and spatial information that is provided by the analyses of the SeaWiFS satellite data will assist paleoclimate researchers to interpret the autochthonous and allochthonous influences at the CONTINENT coring sites.  相似文献   
22.
Lake Baikal, an ancient pristine lake in Siberia, has accumulated sediment deposits that span 25 million years. These deposits have the potential to provide a long-term record of climate changes and their interaction with the ecology of the lake. In order to investigate whether sedimentary phytoplankton pigments could be used to reconstruct past changes in total phytoplankton abundance and productivity, we compared the spatial variability in sedimentary pigment distributions in Holocene cores from three separate regions of the lake; Vidrino in the south, Posolski on Selenga Delta and Continent Ridge in the north. Furthermore, we present the first continuous sedimentary pigment and organic carbon sequence of the Kazantsevo interglacial (roughly a time equivalent to the European Eemian, and Marine Isotopic Stage MIS5e) at a resolution of approximately 150 years. Results of the spatial study showed marked differences in the sediment pigment deposition. Lowest chlorophyll a plus its degradation products versus organic carbon ratios (Chlas/TOC) indicating lowest production, but highest variability with time (indicating strongest climatic oscillations) were found at Continent Ridge. The study of sedimentary pigments deposited during the last two interglacial periods at Continent Ridge showed Chlas/TOC ratios 50–1000 times higher during the Kazantsevo Interglacial compared to the glacial periods, whereas the TOC content was only five times higher, thus indicating the significance of the Chlas/TOC ratio for the reconstruction of the phytoplankton abundance and productivity. Strong oscillations occurred during the Kazantsevo Interglacial within centennial time scales. Chlorophyllb plus its degradation products provided additional information on the past development of Chlorophyceae. Highest Chlas/TOC ratios were found during the early Holocene at approximately 9 kyr BP. Indications of short phytoplankton production maxima were also found during the late Atlantic (6 kyr BP) and at the Subboreal/Subatlantic transition (3 kyr BP). From this we conclude that sedimentary chlorophyll a is a reliable indicator of phytoplanktonic response to climate changes and may serve for␣validation of future climate scenarios in continental regions.  相似文献   
23.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号