首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5657篇
  免费   1066篇
  国内免费   1375篇
测绘学   367篇
大气科学   1218篇
地球物理   1343篇
地质学   3099篇
海洋学   568篇
天文学   235篇
综合类   546篇
自然地理   722篇
  2024年   13篇
  2023年   71篇
  2022年   263篇
  2021年   309篇
  2020年   220篇
  2019年   292篇
  2018年   377篇
  2017年   341篇
  2016年   332篇
  2015年   299篇
  2014年   324篇
  2013年   315篇
  2012年   335篇
  2011年   375篇
  2010年   362篇
  2009年   316篇
  2008年   232篇
  2007年   261篇
  2006年   243篇
  2005年   210篇
  2004年   155篇
  2003年   163篇
  2002年   204篇
  2001年   177篇
  2000年   187篇
  1999年   257篇
  1998年   168篇
  1997年   184篇
  1996年   169篇
  1995年   171篇
  1994年   137篇
  1993年   168篇
  1992年   102篇
  1991年   78篇
  1990年   61篇
  1989年   48篇
  1988年   43篇
  1987年   34篇
  1986年   21篇
  1985年   14篇
  1984年   5篇
  1983年   8篇
  1982年   13篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1969年   4篇
  1958年   14篇
  1954年   1篇
  1947年   1篇
排序方式: 共有8098条查询结果,搜索用时 15 毫秒
941.
In this study, a systematic survey of cultural airborne fungi was carried out in the occurrence environments of wall paintings that are preserved in the Tiantishan Grottoes and the Western Xia Museum, China. A bio-aerosol sampler was used for sampling in four seasons in 2016. Culture-dependent and -independent methods were taken to acquire airborne fungal concentration and purified strains; by the extraction of genomic DNA, amplification of fungal ITS rRNA gene region, sequencing, and phylogenetic analysis, thereafter the fungal community composition and distribution characteristics of different study sites were clarified. We disclosure the main environmental factors which may be responsible for dynamic changes of airborne fungi at the sampling sites. The concentration of cultural airborne fungi was in a range from 13 to 1,576 CFU/m3, no significant difference between the two sites at the Tiantishan Grottoes, with obvious characteristics of seasonal variation, in winter and spring were higher than in summer and autumn. Also, there was a significant difference in fungal concentration between the inside and outside of the Western Xia Museum, the outside of the museum was far more than the inside of the museum in the four seasons, particularly in the winter. Eight fungal genera were detected, including Cladosporium, Penicillium, Alternaria, and Filobasidium as the dominant groups. The airborne fungal community structures of the Tiantishan Grottoes show a distinct characteristic of seasonal variation and spatial distribution. Relative humidity, temperature and seasonal rainfall influence airborne fungal distribution. Some of the isolated strains have the potential to cause biodeterioration of ancient wall paintings. This study provides supporting information for the pre-warning conservation of cultural relics that are preserved at local sites and inside museums.  相似文献   
942.
Increased attention has been given to ground-borne vibrations induced by railway vehicles and to the effects of these vibrations as they propagate through the g...  相似文献   
943.
Wang  Zhi-wei  He  Yan-ping  Li  Ming-zhi  Qiu  Ming  Huang  Chao  Liu  Ya-dong  Wang  Zi 《中国海洋工程》2021,35(6):914-923
China Ocean Engineering - Numerical simulations of evolution characteristics of slug flow across a 90° pipe bend have been carried out to study the fluid—structure interaction response...  相似文献   
944.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
945.
金万富  何广静  陈乐 《热带地理》2020,40(3):515-524
利用空间分析和数理统计等方法探究了1984—2016年中国高尔夫球场数量时空演变、影响因素和扩散模式。结果表明:1)球场数量变化经历了低速增长期、稳定增长期、加速增长期和紧缩期;2)球场空间分布范围经历了扩张期和收缩期,向北、向西扩散较为明显;3)目前球场主要分布在经济发展水平较高且外向型经济突出的长三角、珠三角和环渤海地区;4)人均GDP、人口规模、区域开放程度、交通优势度、气候类型和土地资源稀缺性与球场空间分布均呈显著正相关,其中交通优势度相关系数最大;5)高尔夫球场空间扩散模式兼具接触性扩散和等级性扩散。  相似文献   
946.
Soil CO_2 efflux, the second largest flux in a forest carbon budget, plays an important role in global carbon cycling. Forest logging is expected to have large effects on soil CO_2 efflux and carbon sequestration in forest ecosystems. However, a comprehensive understanding of soil CO_2 efflux dynamics in response to forest logging remains elusive due to large variability in results obtained across individual studies. Here, we used a meta-analysis approach to synthesize the results of 77 individual field studies to determine the impacts of forest logging on soil CO_2 efflux. Our results reveal that forest logging significantly stimulated soil CO_2 efflux of the growing season by 5.02%. However, averaged across all studies, nonsignificant effect was detected following forest logging. The large variation among forest logging impacts was best explained by forest type, logging type, and time since logging. Soil CO_2 efflux in coniferous forests exhibited a significant increase(4.38%) due to forest logging, while mixed and hardwood forests showed no significant change. Logging type also had a significant effect on soil CO_2 efflux, with thinning increasing soil CO_2 efflux by 12.05%, while clear-cutting decreasing soil CO_2 efflux by 8.63%. The time since logging also had variable effects, with higher soil CO_2 efflux for 2 years after logging, and lower for 3-6 years after logging; when exceeded 6 years, soil CO_2 efflux increased. As significantly negative impacts of forest logging were detected on fine root biomass, the general positive effects on soil CO_2 efflux can be explained by the accelerated decomposition of organic matter as a result of elevated soil temperature and organic substrate quality. Our results demonstrate that forest logging had potentially negative effects on carbon sequestration in forest ecosystems.  相似文献   
947.
The effects of root systems on soil detachment by overland flow are closely related to vegetation types. The objective of this study was to quantify the effects of two gramineous roots (Paspalum mandiocanum with shallow roots and Pennisetum giganteum with deep roots) on soil detachment capacity, rill erodibility, and critical shear stress on alluvial fans of benggang in south-east China. A 4-m-long and 0.12-m-wide flume was used. Slope steepness ranged from 9% to 27%, and unit flow discharge ranged from 1.39 × 10−3 to 4.19 × 10−3 m2 s−1. The mean detachment capacities of P. mandiocanum and P. giganteum lands were 18% and 38% lower than that of bare land, respectively, and the effects of root on reducing soil detachment were mainly reflected in the 0- to 5-cm soil layer. The most important factors in characterizing soil detachment capacity were root length density and soil cohesion, and soil detachment capacity of the two grass lands could be estimated using flow shear stress, soil cohesion, and root length density (NSE = 0.90). With the increase in soil depth, rill erodibility increased, whereas shear stress decreased. The mean rill erodibilities of P. mandiocanum and P. giganteum lands were 81% and 61% as much as that of bare land, respectively. Additionally, rill erodibilities of the two grass lands could be estimated as an exponential function by root length density and soil cohesion (NSE = 0.88). The mean critical shear stress of P. mandiocanum and P. giganteum lands was 1.29 and 1.39 times that of bare land, respectively, and it could be estimated with a linear function by root length density (NSE = 0.76). This study demonstrated that planting of the two grasses P. mandiocanum and P. giganteum could effectively reduce soil detachment and enhance soil resistance to erosion on alluvial fans, with the deep roots of P. giganteum being more effective than the shallow roots of P. mandiocanum. The results are helpful for understanding the influencing mechanism of root systems on soil detachment process.  相似文献   
948.
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
949.
This study uses an incompressible smoothed‐particle hydrodynamics model to investigate the interaction between dry granular material flows and rigid barriers. The primary aim is to summarise some practical guidelines for the design of debris‐resisting barriers. The granular materials are modelled as a rigid‐perfectly plastic material where the plastic flow corresponds to the critical state. The coupled continuity equation and momentum equation are solved by a semi‐implicit algorithm. Compared with flows in controlled flume experiments, the model adequately reproduces both the kinetic of the flows and the impact force under various conditions. Then the numerical simulations are used to study the detailed interaction process. It is illustrated quantitatively that the interaction force consists of two parts, ie, the earth pressure force caused by the weight of the soil and a dynamic force caused by the internal deformation (flowing mass on top of a dead zone). For the estimation of impact load, this study suggests that an increased earth pressure coefficient depending on the Froude number should be incorporated into the hydrostatic model.  相似文献   
950.
This paper presents a constitutive model for time‐dependent behaviour of granular material. The model consists of 2 parts representing the inviscid and viscous behaviour of granular materials. The inviscid part is a rate‐independent hypoplastic constitutive model. The viscous part is represented by a rheological model, which contains a high‐order term denoting the strain acceleration. The proposed model is validated by simulating some element tests on granular soils. Our model is able to model not only the non‐isotach behaviour but also the 3 creep stages, namely, primary, secondary, and tertiary creep, in a unified way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号