首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   10篇
  国内免费   2篇
测绘学   3篇
大气科学   26篇
地球物理   52篇
地质学   96篇
海洋学   7篇
天文学   29篇
自然地理   10篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   21篇
  2015年   6篇
  2014年   10篇
  2013年   15篇
  2012年   11篇
  2011年   7篇
  2010年   10篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1963年   1篇
  1958年   1篇
  1955年   1篇
  1917年   1篇
排序方式: 共有223条查询结果,搜索用时 46 毫秒
171.

Springs located at the historical sites of Wadi Araba (Eastern Desert of Egypt) and emerging from the escarpments of the Northern and Southern Galala Plateaus were investigated. A combination of methods, including hydrochemistry, stable and radioisotope composition, and structural analyses based on satellite data, provided information about the structure of the subsurface and the derived groundwater flow paths. Satellite images reveal karst features within the northern plateau, e.g. conical landforms. Karstic caves were documented along both escarpments. Chemical analysis of floodwater from Wadi Araba indicates higher concentrations of terrestrial salts compared to floodwaters from central and southern parts of the desert. δ18O and δ2H signatures in spring waters resemble those of floodwater and fall on the global meteoric water line, confirming their fast infiltration with minor influence of evaporation. The aquifer feeding the springs of the Northern Galala Plateau has low retention and the springs dry out quickly, even after heavy rainfall. Contrastingly, 3H activities in springs emerging from the Southern Galala Plateau refer to much slower subsurface passage. With respect to 3H content (3.8 TU) in recent flood waters, the spring water at Southern Galala Plateau contains about 40% recently recharged groundwater. However, its largest spring—the St. Antony spring—discharges water with a radiocarbon age of about 15,000 years. In combination with this spring’s constant and high discharge over a period of several months, that age estimate suggests a large reservoir with moderate to high retention.

  相似文献   
172.
As we move about and interact in the world, we keep track of different spaces, among them the space of navigation, the space immediately around the body, and the space of the body. We review research showing that these spaces are conceptualized differently. Knowledge of the space of navigation is systematically distorted. For example, people mentally rotate roads and land masses to greater correspondence with global reference frames, they mentally align roads and land masses, they overestimate distances near the viewpoint relative to those far from it. These and other distortions indicate that the space of navigation is schematized to elements and spatial relations relative to reference frames and perspective. The space around the body is organized into a mental framework consisting of extensions of the major axes of the body. Times to report objects around the body suggest that the relative accessibility of the axes depends on their perceptual and functional properties and the relation of the body to the world. Finally, times to verify named or depicted body parts indicate that body schemas depend on perceptual and functional significance. Thus, these spaces (and they are not the only ones important to human interaction) differ from one another and are not conceptualized as Euclidean. Rather they are schematized into elements and spatial relations that reflect perceptual and conceptual significance.  相似文献   
173.
The Bashkirian anticlinorium of the southwestern Urals shows a much more complex structural architecture and tectonic evolution than previously known. Pre-Uralian Proterozoic extensional and compressional structures controlled significantly the Uralian tectonic convergence. A long-lasting Proterozoic rift process created extensional basement structures and a Riphean basin topography which influenced the formation of the western fold-and-thrust-belt with inversion structures during the Uralian deformation. A complete orogenic cycle during Cadomian times, including terrane accretion at the eastern margin of the East European platform, resulted in a high-level Cadomian basement complex, which controlled the onset of Uralian deformation, and resulted in intense imbrication and tectonic stacking in the subjacent footwall of the Main Uralian fault. The Uralian orogenic evolution can be subdivided into three deformation stages with differently oriented stress regimes. Tectonic convergence started in the Late Devonian with ophiolite obduction, tectonic accretion of basin and slope units and early flysch deposits (Zilair flysch). The accretionary complex prograded from the SE to the NW. Continuous NW/SE-directed convergence resulted finally in the formation of an early orogenic wedge thrusting the Cadomian basement complex onto the East European platform. The main tectonic shortening was connected with these two stages and, although not well constrained, appears to be of Late Devonian to Carboniferous age. In the Permian a final stage of E–W compression is observed throughout the SW Urals. In the west the fold-and-thrust-belt prograded to the west with reactivation of former extensional structures and minor shortening. In the east this phase was related to intense back thrusting. The East European platform was subducted beneath the Magnitogorsk magmatic arc during the Late Paleozoic collision. The thick and cold East European platform reacted as a stable rigid block which resulted in a narrow zone of intense crustal shortening, tectonic stacking and high strain at its eastern margin. Whereas the first orogenic wedge is of thick-skinned type with the involvement of crystalline basement, even the later west-directed wedge is not typically thin-skinned as the depth of the basal detachment appears below 15 km and the involvement of Archean basement can be assumed.  相似文献   
174.
We present the first electron time-of-flight measurements obtained with the Electron Drift Instrument (EDI) on Equator-S. These measurements are made possible by amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. The purpose of the time-of-flight measurements is twofold. First, they provide the drift velocity, and thus the electric field, when the distance the electrons drift in a gyro period becomes sufficiently large. Second, they provide the gyro time of the electrons emitted by the instrument, and thus the magnitude of the ambient magnetic field, allowing in-flight calibration of the flux-gate magnetometer with high precision. Results of both applications are discussed.  相似文献   
175.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   
176.
The effect of surface phenomena occurring at the interfaces between immiscible fluids and a solid on the seismic attributes of partially saturated rocks has not yet been fully studied. Meanwhile, over the past two decades considerable progress has been made in the physics of wetting to understand effects such as contact line friction, contact line pinning, contact angle hysteresis, and equilibrium contact angle. In this paper, we developed a new rock physics model considering the aforementioned effects on seismic properties of the rock with a partially saturated plane-strain crack. We demonstrated that for small wave-induced stress perturbations, the contact line of the interface meniscus will remain pinned, while the meniscus will bulge and change its shape through the change of the contact angles. When the stress perturbation is larger than a critical value, the contact line will move with advancing or receding contact angle depending on the direction of contact line motion. A critical stress perturbation predicted by our model can be in the range of ∼102−104 Pa, that is typical for linear seismic waves. Our model predicts strong seismic attenuation in the case when the contact line is moving. When the contact line is pinned, the attenuation is negligibly small. Seismic attenuation is associated with the hysteresis of loading and unloading bulk moduli, predicted by our model. The hysteresis is large when the contact line is moving and negligibly small when the contact line is pinned. Furthermore, we demonstrate that the bulk modulus of the rock with a partially saturated crack depends also on the surface tension and on the contact angle hysteresis. These parameters are typically neglected during calculation of the effecting fluid moduli by applying different averaging techniques. We demonstrate that contact line friction may be a dominant seismic attenuation mechanism in the low frequency limit (<∼10 Hz) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow.  相似文献   
177.
At the geothermal test site near Groß Schönebeck (NE German Basin), a new 3D seismic reflection survey was conducted to study geothermal target layers at around 4 km depth and 150°C. We present a workflow for seismic facies classification and modelling which is applied to a prospective sandstone horizon within the Rotliegend formation. Signal attributes are calculated along the horizon using the continuous Morlet wavelet transform. We use a short mother wavelet to allow for the temporal resolution of the relatively short reflection signals to be analysed. Time-frequency domain data patterns form the input of a neural network clustering using self-organizing maps. Neural model patterns are adopted during iterative learning to simulate the information inherent in the input data. After training we determine a gradient function across the self-organizing maps and apply an image processing technique called watershed segmentation. The result is a pattern clustering based on similarities in wavelet transform characteristics. Three different types of wavelet transform patterns were found for the sandstone horizon. We apply seismic waveform modelling to improve the understanding of the classification results. The modelling tests indicate that thickness variations have a much stronger influence on the wavelet transform response of the sandstone horizon compared with reasonable variations of seismic attenuation. In our interpretation, the assumed thickness variations could be a result of variable paleo-topography during deposition of predominantly fluvial sediments. A distinct seismic facies distribution is interpreted as a system of thicker paleo-channels deposited within a deepened landscape. The results provide constraints for the ongoing development of the geothermal test site.  相似文献   
178.
179.
Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP‐Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP‐Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost of operating the combined wellfield‐storage‐demand system over the course of a 2‐year planning period based on a time series of observed price on the Danish power market and a deterministic, time‐varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP was solved for a baseline situation and for five scenario runs representing different EFP‐Q relationships and different maximum wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant‐rate pumping benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation under a variable power price regime are the shape of the EFP‐Q relationship, the maximum feasible pumping rate and the capacity of available storage facilities.  相似文献   
180.
Coastal managers presently rely on a limited set of decision support tools for designing marine protected areas (MPAs) or subzones. A new approach, defining potential sizes and shapes of MPA boundaries early in the design process, is presented in a case study. A sliding window of the same dimensions as potential boundary configurations was regularly shifted throughout the study area and used to quantify variables representing preferred biophysical and socioeconomic characteristics. The technique offers advantages in spatially restricted areas, areas where habitat connectivity is critical, and situations wherein providing stakeholders with an up-front understanding of potential boundaries is required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号