首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   17篇
  国内免费   8篇
测绘学   15篇
大气科学   20篇
地球物理   74篇
地质学   157篇
海洋学   13篇
天文学   45篇
综合类   1篇
自然地理   24篇
  2023年   1篇
  2022年   10篇
  2021年   16篇
  2020年   13篇
  2019年   15篇
  2018年   26篇
  2017年   42篇
  2016年   39篇
  2015年   16篇
  2014年   28篇
  2013年   26篇
  2012年   22篇
  2011年   24篇
  2010年   11篇
  2009年   14篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有349条查询结果,搜索用时 984 毫秒
101.
Mathematical Geosciences -  相似文献   
102.
The multiscale wavelet analysis has been applied to the gravity data from northeastern Morocco to map the major geological contacts, such us faults. Hence, the faults affecting the survey area were outlined with their importance level and dip direction. Seismic data confirm these results and testify the efficiency of this method, particularly in studying structure of plains. The structural map established is a very useful document in the planning of natural resources investigations (i.e. water, mines) to be undertaken in the area of study. To cite this article: D. Khattach et al., C. R. Geoscience 338 (2006).  相似文献   
103.
Arabian Journal of Geosciences - Dust storms are one of the major environmental disasters in the arid regions of Middle East, occurring in very high frequency. As a result, monitoring dust storms...  相似文献   
104.
105.
Radiance data assimilation for operational snow and streamflow forecasting   总被引:1,自引:0,他引:1  
Estimation of seasonal snowpack, in mountainous regions, is crucial for accurate streamflow prediction. This paper examines the ability of data assimilation (DA) of remotely sensed microwave radiance data to improve snow water equivalent prediction, and ultimately operational streamflow forecasts. Operational streamflow forecasts in the National Weather Service River Forecast Center (NWSRFC) are produced with a coupled SNOW17 (snow model) and SACramento Soil Moisture Accounting (SAC-SMA) model. A comparison of two assimilation techniques, the ensemble Kalman filter (EnKF) and the particle filter (PF), is made using a coupled SNOW17 and the microwave emission model for layered snow pack (MEMLS) model to assimilate microwave radiance data. Microwave radiance data, in the form of brightness temperature (TB), is gathered from the advanced microwave scanning radiometer-earth observing system (AMSR-E) at the 36.5 GHz channel. SWE prediction is validated in a synthetic experiment. The distribution of snowmelt from an experiment with real data is then used to run the SAC-SMA model. Several scenarios on state or joint state-parameter updating with TB data assimilation to SNOW-17 and SAC-SMA models were analyzed, and the results show potential benefit for operational streamflow forecasting.  相似文献   
106.
The uncertainties associated with atmosphere‐ocean General Circulation Models (GCMs) and hydrologic models are assessed by means of multi‐modelling and using the statistically downscaled outputs from eight GCM simulations and two emission scenarios. The statistically downscaled atmospheric forcing is used to drive four hydrologic models, three lumped and one distributed, of differing complexity: the Sacramento Soil Moisture Accounting (SAC‐SMA) model, Conceptual HYdrologic MODel (HYMOD), Thornthwaite‐Mather model (TM) and the Precipitation Runoff Modelling System (PRMS). The models are calibrated based on three objective functions to create more plausible models for the study. The hydrologic model simulations are then combined using the Bayesian Model Averaging (BMA) method according to the performance of each models in the observed period, and the total variance of the models. The study is conducted over the rainfall‐dominated Tualatin River Basin (TRB) in Oregon, USA. This study shows that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, except during the dry season, suggesting that the hydrologic model selection‐combination is critical when assessing the hydrologic climate change impact. The implementation of the BMA in analysing the ensemble results is found to be useful in integrating the projected runoff estimations from different models, while enabling to assess the model structural uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
107.
Snow water equivalent prediction using Bayesian data assimilation methods   总被引:1,自引:0,他引:1  
Using the U.S. National Weather Service’s SNOW-17 model, this study compares common sequential data assimilation methods, the ensemble Kalman filter (EnKF), the ensemble square root filter (EnSRF), and four variants of the particle filter (PF), to predict seasonal snow water equivalent (SWE) within a small watershed near Lake Tahoe, California. In addition to SWE estimation, the various data assimilation methods are used to estimate five of the most sensitive parameters of SNOW-17 by allowing them to evolve with the dynamical system. Unlike Kalman filters, particle filters do not require Gaussian assumptions for the posterior distribution of the state variables. However, the likelihood function used to scale particle weights is often assumed to be Gaussian. This study evaluates the use of an empirical cumulative distribution function (ECDF) based on the Kaplan–Meier survival probability method to compute particle weights. These weights are then used in different particle filter resampling schemes. Detailed analyses are conducted for synthetic and real data assimilation and an assessment of the procedures is made. The results suggest that the particle filter, especially the empirical likelihood variant, is superior to the ensemble Kalman filter based methods for predicting model states, as well as model parameters.  相似文献   
108.
The combination of age determination and geochemical tracers allows understanding the source evolution during magmatism. We studied the Sapat Complex, in the exhumed Cretaceous Kohistan Paleo-Island Arc, to reconstruct the formation of the juvenile lower arc crust and the evolution of the mantle source during arc magmatism. High precision ID-TIMS U/Pb dating on zircon, shows that a protracted period of magmatic accretion formed the Sapat Complex between 105 and 99 Ma. Since continued melt percolation processes that formed the lower crust obscured the original bulk rock Nd–Pb–Sr isotopic composition, we rely on the Hf isotopic composition of zircons of different ages to unravel the source evolution. Nd and Pb bulk isotopic compositions coupled with Hf isotopic composition on zircons allow reconstructing a geodynamical scenario for the Sapat Complex, and the Cretaceous history of the Arc. We suggest that trenchward migration of the hot mantle source at 105 Ma explains the small heterogeneous εHf signal between + 14 and + 16. This heterogeneity vanished within ca. 2 million years, and the εHf of the source evolved from + 16 to + 14 at 99 Ma. Integrated to the Kohistan Cretaceous history, which has a baseline of εHf  14, these data pinpoint two geodynamical events, with slab retreat and the formation of the Sapat Complex followed by splitting of the Kohistan island arc at 85 Ma.  相似文献   
109.
The propagation of cylindrical and spherical electron acoustic (EA) shock waves in unmagnetized plasmas consisting of cold fluid electrons, hot electrons obeying a superthermal distribution and stationary ions, has been investigated. The standard reductive perturbation method (RPM) has been employed to derive the cylindrical/spherical Korteweg-de-Vries-Burger (KdVB) equation which governs the dynamics of the EA shock structures. The effects of nonplanar geometry, plasma kinematic viscosity and electron suprathermality on the temporal evolution of the cylindrical and spherical EA shock waves are numerically examined.  相似文献   
110.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号