For 15 years since the beginning of China Argo project, China has deployed over 350 profiling floats in Pacific and Indian ocean, and constructed China Argo ocean observing network. Moreover, we have setup the Argo data receiving, processing and distributing system, and developed various Argo data products using Argo observations, which has promoted the progress of ocean data sharing in China. The abundant Argo data have become a main data source in oceanic and atmospheric basic researches and operational applications. A batch of important achievements in basic research and operational application have been brought, e.g. in aspects of tropical cyclone (typhoon), ocean circulation, meso-scale eddy, turbulence, heat/salt storage and transport and water mass, as well as in ocean, atmosphere/climate operational forecasting and predicting. With the extension of the international Argo program from “Core Argo” to “Global Argo”, we are faced with great challenges in the long-term maintaining and sustained developing of our Argo ocean observing network. It is suggested that we should take the opportunity to construct China regional Argo ocean observing network as soon as possible in adjacent northwestern Pacific and Indian ocean using Chinese BeiDou profiling floats, which will make us to take responsibility and obligation of a big country for addressing global climate changes and preventing natural disasters. 相似文献
正Salt lake resource is one of preponderant and strategic mineral resources in China.Some important chemical elements contained in brine are highly significant to both agriculture security and national security.Given the 相似文献
The microstructures, major‐ and trace‐element compositions of minerals and electron backscattered diffraction (EBSD) maps of high‐ and low‐Cr# [spinel Cr# = Cr3+/(Cr3++Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo‐Tethyan Ocean. The high‐Cr# (0.77‐0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction‐produced magmas in a shallow, mature mantle wedge. Some high‐Cr# chromitites show crystal‐plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high‐Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low‐Cr# (0.49‐0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB‐like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high‐Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low‐Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo‐Tethyan subduction at ~130‐120 Ma. This two‐episode subduction model can provide a new explanation for the coexistence of high‐ and low‐Cr# chromitites in the same volume of ophiolitic mantle. 相似文献