首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33762篇
  免费   572篇
  国内免费   394篇
测绘学   883篇
大气科学   3099篇
地球物理   6964篇
地质学   12169篇
海洋学   2563篇
天文学   7048篇
综合类   90篇
自然地理   1912篇
  2020年   179篇
  2019年   196篇
  2018年   864篇
  2017年   843篇
  2016年   815篇
  2015年   529篇
  2014年   757篇
  2013年   1422篇
  2012年   899篇
  2011年   1121篇
  2010年   885篇
  2009年   1251篇
  2008年   1082篇
  2007年   952篇
  2006年   1060篇
  2005年   1358篇
  2004年   1506篇
  2003年   1280篇
  2002年   898篇
  2001年   749篇
  2000年   788篇
  1999年   660篇
  1998年   629篇
  1997年   666篇
  1996年   575篇
  1995年   541篇
  1994年   482篇
  1993年   427篇
  1992年   421篇
  1991年   416篇
  1990年   422篇
  1989年   398篇
  1988年   380篇
  1987年   466篇
  1986年   435篇
  1985年   464篇
  1984年   558篇
  1983年   560篇
  1982年   501篇
  1981年   490篇
  1980年   447篇
  1979年   433篇
  1978年   447篇
  1977年   394篇
  1976年   355篇
  1975年   355篇
  1974年   405篇
  1973年   389篇
  1972年   245篇
  1971年   224篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
The collisionless interaction of an expanding plasma cloud with a magnetized background plasma is examined in the framework of a 3D kinetic-hydrodynamic model. The slowing down of a hydrogen cloud is studied for high Alfven-Mach numbers and magneto-laminar interaction parameters. A particle-in-cell method is used to study the dynamics of the magnetic field, plasma cloud, background plasma, and collisionless shock wave generated by the intense particle flux. A numerical simulation is consistent with the nonstationary interactions between the plasma shells formed during nova and supernova explosions and the interstellar plasma medium.  相似文献   
163.
164.
165.
166.
Moore  M. H.  Hudson  R. L.  Ferrante  R. F. 《Earth, Moon, and Planets》2003,92(1-4):291-306
Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO → C3O2). New IR spectra are reported for the 1–5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.  相似文献   
167.
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed.  相似文献   
168.
 The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the Atmospheric Model Intercomparison Project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979–1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. Large model-to-model variations were also seen in the simulations of the annual mean meridional stress field over equatorial Indian Ocean, south central Pacific, north east Pacific and equatorial eastern Pacific oceans. It is shown that the systematic errors in simulating the surface winds are related to the systematic errors in simulating the Inter-Tropical Convergence Zone (ITCZ) in its location and intensity. Weaker than observed annual mean southwesterlies simulated by most models over Somali is due to weaker than observed southwesterlies during the Northern Hemisphere summer. This is related to the weaker than observed land precipitation simulated by most models during the Northern Hemisphere summer. The diversity in simulation of the surface wind over Somali and equatorial Indian ocean is related to the diversity of AGCMs in simulating the precipitation zones in these regions. Received: 2 August 1996 / Accepted: 7 February 1997  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号